PL/Parrot and PL/Perl6

Parrots and Butterflies in PostgreSQL

Jonathan "Duke” Leto

Parrot Virtual Machine

Process (Application) Virtual Machine
Register-based
Continuation Passing Style

Design Goals

e Pluggable
e Interoperable
e Dynamic

2.7.0 " Australian King" just released
Undergoing lots of optimizations

Rakudo Perl 6

Most active implementation of Perl 6
Implements ~ 80% of the spec

Currently uses Parrot as a backend, but plans to
support others

Stable release series is Rakudo Star, dev release
every month

Getting faster due to optimizations in Parrot

u]
o)
I
i
it
N
»
?

Why Embed Parrot VM in
PostgreSQL?

e Procedural /PostgreSQL Languages (PL's) are hard
to write and maintain

e PL/Parrot does the hard work, HLLs benefit with
much less effort

e Platform independent, fast!, stored procedures

u]
o)
I

i
it
)
»
Q

PL/Parrot Timeline

PostgreSQL came from Ingres, started in the mid
1970's

Parrot started around 2001

Empty pgFoundry repo created 2006 by David
Fetter/Joshua Tolley

GitHub repo created Oct 2009 by Duke Leto
PL/Perl6 started to work June 2010
What next?

Current Features

PL/PIR and PL/Perl6

Pass and return basic datatypes
Basic security model (Don't do that)
Growing Test Suite

Enthusiastic and friendly community

Coolest Feature: Use Perl 6 grammars in
PostgreSQL!

Things that creak

Documentation - http://pl.parrot.org

SPI - branch being worked by cxreg++, elog works!
Triggers - we need help!

SETOF - branch with some tests

Row handling

Parrot Bugs

e IMCC Syntax Errors
e Security API
o Extend/Embed API

u]
o)
I
i
it
N
»
?

Installing / Testing PL/Parrot

Install Rakudo or Parrot

parrot_config needs to be in your $PATH

One of:

git clone git://github.com/leto/plparrot.git

wget http://icanhaz.com/plparrot0.20

cd plparrot

export PGPORT=5555 # if necessary

make install installcheck # might need sudo

make test test_plperl6 # PL/PIR + PL/Perl6 tests

u]
o)
I
i
it
N
»
?

PL/PIR Example 1
CREATE OR REPLACE FUNCTION
pir_concat (text,text, float)

RETURNS varchar LANGUAGE plpir AS $$%
.param string sl
.param string s2
.param num X
if x < 0 goto backward

$S1 = s1 . s2

goto done
backward:

$S1 = s2 sl
done:

.return($S1)
$%:

PL/Perl6 Example 1

CREATE OR REPLACE FUNCTION fibonacci_sum(int)

RETURNS int LANGUAGE plperl6 AS $$%
{

}
$%:

[+] (1, 1, 4+ ... $"limit)

PL/Perl6 Example 2

CREATE OR REPLACE FUNCTION is_inventory (text) RETURNS integer
LANGUAGE plperl6 AS q%

($item) {
This grammar needs a 'my’ because the default
is 'our' i.e. package scope
my grammar Inventory {
regex product { \d+ }
regex quantity { \d+ }
regex color { \S+ }

regex description { \Nx }
rule TOP { "~ <product> <quantity>

[
| <description> "(' \s* <color> \sx ')’
| <color> <description>
]
$$
}
¥
return ?lnventory.parse($item);

$q%;

How is PL/PIR Sausage
Made?

A Parrot interpreter is created for each language
PG datatypes are converted to Parrot datatypes, in
C, with magic

Stored procedure code is wrapped in anonymous
sub, compiled and invoked from C with
Parrot_ext_call

Parrot datatypes are converted back to PG
datatypes

u]
o)
I

i
it
N
»
?

How is PL/Perl6 Sausage
Made?

perl6.pbc is automagically found and loaded into the
interp for PL/Perl6

PG datatypes are converted to PL/Perl6 datatypes
in PIR with &infix<,>

Stored procedure code is wrapped in a closure,
compiled and invoked from PIR

PL/Perl6 datatypes are converted back to PG
datatypes

u]
o)
I
i
it
N
»
?

Future Goals

Easy onramps to add new languages to PL/Parrot
Framework for DSL'’s
Allow various PL's to communicate

Freeze/thaw subtransaction-level states

u]
o)
I
i
it

Get involved!

Try PL/Parrot on your system and submit detailed
bug reports

Fork on github and hack on stuff!

Help with GitHub Issues

#plparrot on freenode
http://pl.parrot.org
http://groups.google.com/group/plparrot

u]
o)
I
i
it

Thanks

e PL/Parrot team:
e David Fetter, David E. Wheeler, Joshua Tolley,
Daniel Arbelo Arrocha, Dave Olszewski
o AKA davidfetter++, theory++, eggyknap++,
darbelo4+-, cxreg++

e Everyone working on Parrot Virtual Machine, Perl 6
and PostgreSQL

e Especially (Moritz Lenz) moritz++, (Peter
Lobsinger) plobsing++ and (Stephen O'Rear)
sorear++-, for great advice and help

u]
o)
I
i
it
N
»
?

Resources

http://pl.parrot.org
http://github.com/leto/plparrot

http://parrot.org
@parrotvm / !parrot on twitter/identi.ca
@dukeleto / lleto on twitter/identi.ca

Slides available at
http://github.com/leto/presentations

