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1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCG+2014], with some
security �xes and adjustments to terminology, functionality and performance. It bridges the existing transparent
payment scheme used by Bitcoin [Naka2008] with a shielded payment scheme secured by zero-knowledge suc-
cinct non-interactive arguments of knowledge (zk-SNARKs).

Changes from the original Zerocash are explained in §7 ‘Differences from the Zerocash paper’ on p. 35, and high-
lighted in magenta throughout the document.

Technical terms for concepts that play an important role in Zcash are written in slanted text . Italics are used for
emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described
in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain
English words, absent their normative meanings.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

• Differences from the Zerocash protocol — a summary of changes from the protocol in [BCG+2014].

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn’t matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The speci�c cause will not
matter to the users of your software whose wealth is lost.

Having said that, a speci�cation of intended behaviour is essential for security analysis, understanding of the pro-
tocol, and maintenance of Zcash and related software. If you �nd any mistake in this speci�cation, please contact
<security@z.cash>. While the production Zcash network has yet to be launched, please feel free to do so in
public even if you believe the mistake may indicate a security weakness.

1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is
not part of the normative protocol speci�cation.

Value in Zcash is either transparent or shielded . Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes 1, which specify an amount and a paying key.
The paying key is part of a payment address , which is a destination to which notes can be sent. As in Bitcoin, this is
associated with a private key that can be used to spend notes sent to the address; in Zcash this is called a spending
key.

1 In Zerocash [BCG+2014], notes were called “coins”, and nulli�ers were called “serial numbers”.
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To each note there is cryptographically associated a note commitment , and a nulli�er 1 (so that there is a 1:1:1 re-
lation between notes , note commitments , and nulli�ers). Computing the nulli�er requires the associated private
spending key. It is infeasible to correlate the note commitment with the corresponding nulli�er without knowl-
edge of at least this spending key. An unspent valid note , at a given point on the block chain, is one for which the
note commitment has been publically revealed on the block chain prior to that point, but the nulli�er has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also contains a sequence of zero or more JoinSplit descriptions . Each of these describes a JoinSplit transfer 2

which takes in a transparent value and up to two input notes , and produces a transparent value and up to two
output notes . The nulli�ers of the input notes are revealed (preventing them from being spent again) and the
commitments of the output notes are revealed (allowing them to be spent in future). Each JoinSplit description
also includes a computationally sound zk-SNARK proof, which proves that all of the following hold except with
negligable probability:

• The input and output values balance (individually for each JoinSplit transfer).

• For each input note of non-zero value, some revealed note commitment exists for that note .

• The prover knew the private spending keys of the input notes .

• The nulli�ers and note commitments are computed correctly.

• The private spending keys of the input notes are cryptographically linked to a signature over the whole trans-
action, in such a way that the transaction cannot be modi�ed by a party who did not know these private keys.

• Each output note is generated in such a way that it is infeasible to cause its nulli�er to collide with the nulli�er
of any other note .

Outside the zk-SNARK , it is also checked that the nulli�ers for the input notes had not already been revealed (i.e.
they had not already been spent).

A payment address includes two public keys: a paying key matching that of notes sent to the address, and a trans-
mission key for a key-private asymmetric encryption scheme. “Key-private” means that ciphertexts do not reveal
information about which key they were encrypted to, except to a holder of the corresponding private key, which
in this context is called the viewing key. This facility is used to communicate encrypted output notes on the block
chain to their intended recipient, who can use the viewing key to scan the block chain for notes addressed to them
and then decrypt those notes .

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some com-
mitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction—its note traceability set — includes all previous notes that the adversary does
not control or know to have been spent. This contrasts with other proposals for private payment systems, such as
CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanS2014], that are based on mixing of a limited number of transactions
and that therefore have smaller note traceability sets .

The nulli�ers are necessary to prevent double-spending: each note only has one valid nulli�er, and so attempting
to spend a note twice would reveal the nulli�er twice, which would cause the second transaction to be rejected.

2 Notation

The notation Bmeans the type of bit values, i.e. {0, 1}.

The notation Nmeans the set of nonnegative integers. N+ means the set of positive integers. Qmeans the set of
rationals.

The notation x ◦
◦ T is used to specify that x has type T . A cartesian product type is denoted byS×T , and a function

type by S → T . An argument to a function can determine other argument or result types.

2 JoinSplit transfers in Zcash generalize “Mint” and “Pour” transactions in Zerocash; see §7.1 ‘Transaction Structure’ on p. 35 for the differ-
ences.
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The type of a randomized algorithm is denoted by S
R→ T . The domain of a randomized algorithm may be (),

indicating that it requires no arguments. Given f ◦
◦ S

R→ T and s ◦
◦ S, sampling a variable x ◦

◦ T from the output of f

applied to s is denoted by x
R← f (s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if x ◦
◦ X , y ◦

◦ Y , and
f ◦

◦ X × Y → Z , then an invocation of f (x, y) can also be written fx(y).

The notation T [`], where T is a type and ` is an integer, means the type of sequences of length ` with elements in
T . For example, B[`] means the set of sequences of ` bits.

The notation T ⊆ U indicates that T is an inclusive subset or subtype of U .

B[8·N] means the set of bit sequences constrained to be of length a multiple of 8 bits.

The notation 0x followed by a string of boldface hexadecimal digits means the corresponding integer converted
from hexadecimal.

The notation “...” means the given string represented as a sequence of bytes in US-ASCII. For example, “abc”
represents the byte sequence [0x61,0x62,0x63].

The notation a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For exam-
ple, anew

pk,1..Nnew means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew ]. (For consistency with the notation in [BCG+2014] and in

[BK2016], this speci�cation uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments
to the contrary made in [EWD-831].)

The notation {a .. b}means the set or type of integers from a through b inclusive.

The notation [f (x) for x from a up to b ] means the sequence formed by evaluating f on each integer from a to b
inclusive, in ascending order. Similarly, [f (x) for x from a down to b ] means the sequence formed by evaluating f
on each integer from a to b inclusive, in descending order.

The notation a || b means the concatenation of sequences a then b.

The notation concatB(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit
sequences. If the elements of S are byte sequences, they are converted to bit sequences with the most significant
bit of each byte �rst.

The notation Fn means the �nite �eld with n elements, and F∗n means its group under multiplication. Fn[z] means
the ring of polynomials over z with coef�cients in Fn.

The notation a · b means the result of multiplying a and b. This may refer to multiplication of integers, rationals, or
�nite �eld elements according to context.

The notation ab, fora an integer or �nite �eld element and b an integer, means the result of raising a to the exponent
b.

The notation a mod q, for a ◦
◦ N and q ◦

◦ N+, means the remainder on dividing a by q.

The notation a⊕bmeans the bitwise exclusive-or of a and b, de�ned either on integers or bit sequences according
to context.

The notation
N∑

i=1
ai means the sum of a1..N .

N⊕
i=1

ai means the bitwise exclusive-or of a1..N .

The binary relations<,≤, =,≥, and> have their conventional meanings on integers and rationals, and are de�ned
lexicographically on sequences of integers.

The notation floor(x) means the largest integer≤ x. ceiling(x) means the smallest integer≥ x.

The symbol ⊥ is used to indicate unavailable information or a failed decryption.

The following integer constants will be instantiated in § 5.3 ‘Constants’ on p. 20: dMerkle, Nold, Nnew, `Merkle, `hSig,
`PRF, `r, `Seed, `ask , `ϕ, MAX MONEY, SlowStartInterval, HalvingInterval, MaxBlockSubsidy, NumFounderAddresses. The
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bit sequence constant Uncommitted ◦
◦ B[`Merkle] and the rational constant FoundersFraction ◦

◦ Qwill also be de�ned in
that section.

3 Concepts

3.1 Payment Addresses and Keys

A key tuple (ask, skenc, addrpk) is generated by users who wish to receive payments under this scheme. The viewing
key skenc and the payment address addrpk = (apk, pkenc) are derived from the spending key ask.

The following diagram depicts the relations between key components. Arrows point from a component to any
other component(s) that can be derived from it.

The composition of payment addresses , viewing keys , and spending keys is a cryptographic protocol detail that
should not normally be exposed to users. However, user-visible operations should be provided to obtain a pay-
ment address or viewing key from a spending key.

Users can accept payment from multiple parties with a single payment address addrpk and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However
if two parties collude to compare a payment address they can trivially determine they are the same. In the case
that a payee wishes to prevent this they should create a distinct payment address for each payer.

Note: It is conventional in cryptography to refer to the key used to encrypt a message in an asymmetric encryp-
tion scheme as the “public key”. However, the public key used as the transmission key component of an address
(pkenc) need not be publically distributed; it has the same distribution as the payment address itself. As men-
tioned above, limiting the distribution of the payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.10
‘In-band secret distribution’ on p. 18), since an adversary would have to know pkenc in order to exploit a hypothet-
ical weakness in that cryptosystem.

3.2 Notes

A note (denoted n) is a tuple (apk, v, ρ, r). It represents that a value v is spendable by the recipient who holds the
spending key ask corresponding to apk, as described in the previous section.

• apk ◦
◦ B[`PRF] is the paying key of the recipient;

• v ◦
◦ {0 ..MAX MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 108 zatoshi );

• ρ ◦
◦ B[`PRF] is used as input to PRFnf

ask to derive the nulli�er of the note ;
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• r ◦
◦ B[`r] is a random bit sequence used as a commitment trapdoor as de�ned in §4.1.7 ‘Commitment’ on p. 13.

Let Note be the type of a note , i.e. B[`PRF] × {0 ..MAX MONEY} ×B[`PRF] ×B[`r].

Creation of new notes is described in §4.4 ‘Sending Notes’ on p. 15. When notes are sent, only a commitment (see
§4.1.7 ‘Commitment’ on p. 13) to the above values is disclosed publically. This allows the value and recipient to be
kept private, while the commitment is used by the zero-knowledge proof when the note is spent, to check that it
exists on the block chain.

The note commitment is computed as NoteCommitment(n) = COMMr(apk, v, ρ), where COMM is instantiated in
§5.4.9 ‘Commitment’ on p. 24.

A nulli�er (denoted nf) is derived from the ρ component of a note and the recipient’s spending key, using a Pseudo
Random Function (see §4.1.2 ‘Pseudo Random Functions’ on p. 10). Speci�cally it is derived as PRFnf

ask (ρ) where

PRFnf is instantiated in §5.4.4 ‘Pseudo Random Functions’ on p. 22.

A note is spent by proving knowledge of ρ and ask in zero knowledge while publically disclosing its nulli�er nf ,
allowing nf to be used to prevent double-spending.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a note commitment cm.

The note plaintexts in a JoinSplit description are encrypted to the respective transmission keys pknew
enc,1..Nnew , and

the result forms part of a transmitted notes ciphertext (see §4.10 ‘In-band secret distribution’ on p. 18 for further
details).

Each note plaintext (denoted np) consists of (v, ρ, r,memo).

The �rst three of these �elds are as de�ned earlier.

memo represents a memo �eld associated with this note . The usage of the memo �eld is by agreement between
the sender and recipient of the note .

3.3 Transactions, Blocks, and the Block Chain

At a given point in time, the block chain view of each full node consists of a sequence of one or more valid blocks .
Each block consists of a sequence of one or more transactions . To each transaction there is associated an initial
treestate , which consists of a note commitment tree (§ 3.5 ‘Note Commitment Tree’ on p. 9), nulli�er set (§ 3.6
‘Nullifier Set’ on p. 10), and data structures associated with Bitcoin such as the UTXO (Unspent Transaction Output)
set.

Inputs to a transaction insert value into a transparent value pool , and outputs remove value from this pool. As in
Bitcoin, the remaining value in the pool is available to miners as a fee.

An anchor is a Merkle tree root of a note commitment tree . It uniquely identi�es a note commitment tree state
given the assumed security properties of the Merkle tree’s hash function. Since the nulli�er set is always updated
together with the note commitment tree , this also identi�es a particular state of the nulli�er set .

In a given node’s block chain view, treestates are chained as follows:

• The input treestate of the �rst block is the empty treestate .

• The input treestate of the �rst transaction of a block is the �nal treestate of the immediately preceding block .

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The �nal treestate of a block is the output treestate of its last transaction.
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TODO: JoinSplit descriptions also have input and output treestates.

We rely on Bitcoin-style consensus for full nodes to eventually converge on their views of valid blocks , and there-
fore of the sequence of treestates in those blocks .

3.4 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value
transfer. This kind of value transfer is the primary Zcash-speci�c operation performed by transactions ; it uses,
but should not be confused with, the JoinSplit statement used for the zk-SNARK proof and veri�cation.

A JoinSplit transfer spends Nold notes nold
1..Nold and transparent input vold

pub, and creates Nnew notes nnew
1..Nnew and trans-

parent output vnew
pub .

Each transaction is associated with a sequence of JoinSplit descriptions .

The input and output values of each JoinSplit transfer MUST balance exactly. The total vnew
pub value adds to, and the

total vold
pub value subtracts from the transparent value pool of the containing transaction.

TODO: Describe the interaction of transparent value flows with the JoinSplit description’s vold
pub and vnew

pub .

The anchor of each JoinSplit description in a transaction must refer to either some earlier block ’s �nal treestate ,
or to the output treestate of any prior JoinSplit description in the same transaction.

These conditions act as constraints on the blocks that a full node will accept into its block chain view.

3.5 Note Commitment Tree

cm1

?

rt

cm2 cm3 cm4 cm5 ?

The note commitment tree is an incremental Merkle tree of �xed depth used to store note commitments that
JoinSplit transfers produce. Just as the unspent transaction output set (UTXO set) used in Bitcoin, it is used to
express the existence of value and the capability to spend it. However, unlike the UTXO set, it is not the job of this
tree to protect against double-spending, as it is append-only.

Blocks in the block chain are associated (by all nodes) with the root of this tree after all of its constituent JoinSplit
descriptions ’ note commitments have been entered into the note commitment tree associated with the previous
block . TODO: Make this more precise.

Each node in the incremental Merkle tree is associated with a hash value of size `Merkle bytes. The layer numbered
h, counting from layer 0 at the root , has 2h nodes with indices 0 to 2h−1 inclusive. The hash value associated with
the node at index i in layer h is denoted Mh

i .
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3.6 Nulli�er Set

Each full node maintains a nulli�er set alongside the note commitment tree and UTXO set. As valid transactions
containing JoinSplit transfers are processed, the nulli�ers revealed in JoinSplit descriptions are inserted into this
nulli�er set .

If a JoinSplit description reveals a nulli�er that already exists in the full node ’s block chain view, the containing
transaction will be rejected, since it would otherwise result in a double-spend.

3.7 Block Subsidy and Founders’ Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy. It is composed of a miner subsidy and a Founders’ Reward . As in Bitcoin, the miner of a block also
receives transaction fees .

The amount of the block subsidy and miner subsidy depends on the block height . The block height of the genesis
block is 0, and the block height of each subsequent block in the block chain increments by 1.

The calculations of the block subsidy, miner subsidy, and Founders’ Reward for a given block height are given in
§6.5 ‘Calculation of Block Subsidy and Founders’ Reward’ on p. 33.

3.8 Coinbase Transactions

The �rst transaction in a block must be a coinbase transaction, which should collect and spend any miner subsidy
and transaction fees paid by transactions included in this block . The coinbase transaction must also pay the
Founders’ Reward as described in §6.6 ‘Coinbase outputs’ on p. 34.

4 Abstract Protocol

4.1 Abstract Cryptographic Functions

4.1.1 Hash Functions

MerkleCRH ◦
◦ B[`Merkle]×B[`Merkle] → B[`Merkle] is a collision-resistant hash function used in §4.5 ‘Merkle path validity’

on p. 16. It is instantiated in §5.4.1 ‘Merkle Tree Hash Function’ on p. 21.

hSigCRH ◦
◦ B[`Seed] × B[`PRF][Nold] × JoinSplitSig.Public → B[`hSig] is a collision-resistant hash function used in § 4.3

‘JoinSplit Descriptions’ on p. 14. It is instantiated in §5.4.2 ‘hSig Hash Function’ on p. 21.

EquihashGen ◦
◦ (n ◦

◦ N+) × N+ × B[8·N] × N+ → B[n] is another hash function, used in §6.4.1 ‘Equihash’ on p. 32 to
generate input to the Equihash solver. The �rst two arguments, representing the Equihash parameters n and k, are
written subscripted. It is instantiated in §5.4.3 ‘Equihash Generator’ on p. 21.

4.1.2 Pseudo Random Functions

PRFx is a Pseudo Random Function keyed by x. Four independent PRFx are needed in our protocol:

PRFaddr ◦
◦ B[`ask ] × {0 .. 255} → B[`PRF]

PRFnf ◦
◦ B[`ask ] × B[`PRF] → B[`PRF]

PRFpk ◦
◦ B[`ask ] × {1..Nold} × B[`hSig] → B[`PRF]

PRFρ ◦
◦ B[`ϕ] × {1..Nnew} × B[`hSig] → B[`PRF]

These are used in § 4.9 ‘JoinSplit Statement’ on p. 17; PRFaddr is also used to derive a payment address from a
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spending key in §4.2 ‘Key Components’ on p. 14. They are instantiated in §5.4.4 ‘Pseudo Random Functions’ on
p. 22.

Security requirement: In addition to being Pseudo Random Functions , it is required that PRFnf
x , PRFaddr

x , and
PRFρx be collision-resistant across all x — i.e. it should not be feasible to �nd (x, y) , (x′, y′) such that PRFnf

x (y) =
PRFnf

x′ (y
′), and similarly for PRFaddr and PRFρ.

Note: PRFnf was called PRFsn in Zerocash [BCG+2014].

4.1.3 Authenticated One-Time Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt ◦
◦ Sym.K× Sym.P→ Sym.C is the encryption algorithm.

Sym.Decrypt ◦
◦ Sym.K × Sym.C → Sym.P ∪ {⊥} is the corresponding decryption algorithm, such that for any

K ∈ Sym.K and P ∈ Sym.P, Sym.DecryptK(Sym.EncryptK(P)) = P. ⊥ is used to represent the decryption of an
invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT ∧ IND-CPA)-secure. “One-time” here means that an
honest protocol participant will almost surely encrypt only one message with a given key; however, the attacker
may make many adaptive chosen ciphertext queries for a given key. The security notions INT-CTXT and IND-CPA
are as de�ned in [BN2007].

4.1.4 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA de�nes a type of public keys KA.Public, a type of private keys KA.Private, and a type
of shared secrets KA.SharedSecret.

Let KA.FormatPrivate ◦
◦ B[`PRF] → KA.Private be a function that converts a bit string of length `PRF to a KA private

key.

Let KA.DerivePublic ◦
◦ KA.Private → KA.Public be a function that derives the KA public key corresponding to a

given KA private key.

Let KA.Agree ◦
◦ KA.Private× KA.Public→ KA.SharedSecret be the agreement function.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.

Security requirements:

• KA.FormatPrivate must preserve suf�cient entropy from its input to be used as a secure KA private key.

• The key agreement and the KDF de�ned in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bern2006, section 3] or [ABR1999, De�nition 3].

More precise formalization of these requirements is beyond the scope of this speci�cation.
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4.1.5 Key Derivation

A Key Derivation Function is de�ned for a particular key agreement scheme and authenticated one-time symmet-
ric encryption scheme ; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

Let KDF ◦
◦ {1..Nnew} × B[`hSig] × KA.SharedSecret × KA.Public × KA.Public → Sym.K be a Key Derivation Function

suitable for use with KA, deriving keys for Sym.Encrypt.

Security requirement: In addition to adaptive security of the key agreement and KDF, the following security
property is required:

Let sk1
enc and sk2

enc each be chosen uniformly and independently at random from KA.Private.

Let pkj
enc := KA.DerivePublic(skj

enc).

An adversary can adaptively query a function Q ◦
◦ {1 .. 2} × B[`hSig] → KA.Public × Sym.K1..Nnew where Qj (hSig) is

de�ned as follows:

1. Choose esk uniformly at random from KA.Private.

2. Let epk := KA.DerivePublic(esk).

3. For i ∈ {1..Nnew}, let Ki := KDF(i, hSig,KA.Agree(esk, pkj
enc), epk, pkj

enc)).

4. Return (epk,K1..Nnew ).

Then the adversary must make another query toQj with random unknown j ∈ {1 .. 2}, and guess j with probability
greater than chance.

If the adversary’s advantage is negligible, then the asymmetric encryption scheme constructed from KA, KDF and
Sym in §4.10 ‘In-band secret distribution’ on p. 18 will be key-private as de�ned in [BBDP2001].

Note: The given de�nition only requires ciphertexts to be indistinguishable between transmission keys that are
outputs of KA.DerivePublic (which includes all keys generated as in §4.2 ‘Key Components’ on p. 14). If a trans-
mission key not in that range is used, it may be distinguishable. This is not considered to be a signi�cant security
weakness.

4.1.6 Signatures

A signature scheme Sig de�nes:

• a type of signing keys Sig.Private;

• a type of verifying keys Sig.Public;

• a type of messages Sig.Message;

• a type of signatures Sig.Signature;

• a randomized key pair generation algorithm Sig.Gen ◦
◦ () R→ Sig.Private× Sig.Public;

• a randomized signing algorithm Sig.Sign ◦
◦ Sig.Private× Sig.Message R→ Sig.Signature;

• a verifying algorithm Sig.Verify ◦
◦ Sig.Public× Sig.Message× Sig.Signature→ B;

such that for any key pair (sk, vk) R← Sig.Gen(), and any m ◦
◦ Sig.Message and s ◦

◦ Sig.Signature R← Sig.Signsk(m),
Sig.Verifyvk(m, s) = 1.
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Zcash uses two signature schemes, one used for signatures that can be veri�ed by script operations such as
OP CHECKSIG and OP CHECKMULTISIG as in Bitcoin, and one called JoinSplitSig which is used to sign transactions
that contain at least one JoinSplit description. The latter is instantiated in §5.4.8 ‘Signatures’ on p. 23. The following
de�nes only the security properties needed for JoinSplitSig.

Security requirement: JoinSplitSig must be Strongly Unforgeable under (non-adaptive) Chosen Message Attack
(SU-CMA), as de�ned for example in [BDEHR2011, De�nition 6]. This allows an adversary to obtain signatures
on chosen messages, and then requires it to be infeasible for the adversary to forge a previously unseen valid
(message, signature) pair without access to the signing key.

Notes:

• Since a fresh key pair is generated for every transaction containing a JoinSplit description and is only used
for one signature (see § 4.6 ‘Non-malleability’ on p. 17), a one-time signature scheme would suf�ce for
JoinSplitSig. This is also the reason why only security against non-adaptive chosen message attack is needed.
In fact the instantiation of JoinSplitSig uses a scheme designed for security under adaptive attack even when
multiple signatures are signed under the same key.

• SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures are intended to be nonmalleable in the
sense of [BIP-62].

4.1.7 Commitment

A commitment scheme is a function that, given a random commitment trapdoor and an input, can be used to
commit to the input in such a way that:

• no information is revealed about it without the trapdoor (“hiding”),

• given the trapdoor and input, the commitment can be veri�ed to “open” to that input and no other (“binding”).

A commitment scheme COMM de�nes a type of inputs COMM.Input, a type of commitments COMM.Output, and
a type of commitment trapdoors COMM.Trapdoor.

Let COMM ◦
◦ COMM.Trapdoor × COMM.Input → COMM.Output be a function satisfying the security requirements

of computational hiding and computational binding, as de�ned in TODO: need reference.

4.1.8 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement , depen-
dent on primary and auxiliary inputs , in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement . The type of zero-knowledge proving system needed by Zcash is
a preprocessing zk-SNARK .

A preprocessing zk-SNARK instance ZK de�nes:

• a type of zero-knowledge proving keys , ZK.ProvingKey;

• a type of zero-knowledge verifying keys , ZK.VerifyingKey;

• a type of primary inputs ZK.PrimaryInput;

• a type of auxiliary inputs ZK.AuxiliaryInput;

• a type of proofs ZK.Proof;

• a type ZK.SatisfyingInputs ⊆ ZK.PrimaryInput× ZK.AuxiliaryInput of inputs satisfying the statement ;

• a randomized key pair generation algorithm ZK.Gen ◦
◦ () R→ ZK.ProvingKey × ZK.VerifyingKey;
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• a proving algorithm ZK.Prove ◦
◦ ZK.ProvingKey × ZK.SatisfyingInputs→ ZK.Proof;

• a verifying algorithm ZK.Verify ◦
◦ ZK.VerifyingKey × ZK.PrimaryInput× ZK.Proof → B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) R← ZK.Gen().

Security requirements:

• Completeness: An honestly generated proof will convince a veri�er: for any (x,w) ∈ ZK.SatisfyingInputs, if
ZK.Provepk(x,w) outputs π, then ZK.Verifyvk(x, π) = 1.

• Proof of Knowledge: For any adversaryA able to �nd an x ◦
◦ ZK.PrimaryInput and proof π ◦

◦ ZK.Proof such that
ZK.Verifyvk(x, π) = 1, there is an ef�cient extractorEA such that ifEA(vk, pk) returnsw, then the probability
that (x,w) < ZK.SatisfyingInputs is negligable.

• Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. TODO: Full definition.

These de�nitions are derived from those in [BCTV2014, Appendix C], adapted to state concrete rather than asymp-
totic security. (ZK.Prove corresponds to P , ZK.Verify corresponds to V , and ZK.SatisfyingInputs corresponds to
RC in the notation of that appendix.)

The Proof of Knowledge de�nition is a way to formalize the property that it is infeasible to �nd a new proof π
where ZK.Verifyvk(x, π) = 1 without knowing an auxiliary input w such that (x,w) ∈ ZK.SatisfyingInputs. (It is
possible to replay proofs, but informally, a proof for a given (x,w) gives no information that helps to �nd a proof
for other (x,w).)

The proving system is instantiated in §5.7 ‘Zero-Knowledge Proving System’ on p. 26. ZKJoinSplit refers to this

proving system specialized to the JoinSplit statement given in §4.9 ‘JoinSplit Statement’ on p. 17. In this case we
omit the key subscripts on ZKJoinSplit.Verify and ZKJoinSplit.Prove, taking them to be the particular proving key

and verifying key de�ned by the JoinSplit parameters in §5.8 ‘JoinSplit Parameters’ on p. 28.

4.2 Key Components

Let KA be a key agreement scheme , instantiated in §5.4.6 ‘Key Agreement’ on p. 23.

A new spending key ask is generated by choosing a bit string uniformly at random from B[`ask ].

apk, skenc and pkenc are derived from ask as follows:

apk := PRFaddr
ask (0)

skenc := KA.FormatPrivate(PRFaddr
ask (1))

pkenc := KA.DerivePublic(skenc)

4.3 JoinSplit Descriptions

A JoinSplit transfer, as speci�ed in §3.4 ‘JoinSplit Transfers and Descriptions’ on p. 9, is encoded in transactions
as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions . When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public veri�cation key and signature.

Each JoinSplit description consists of (vold
pub, vnew

pub , rt, nfold
1..Nold , cmnew

1..Nnew , epk, randomSeed, h1..Nold , πJoinSplit,Cenc
1..Nnew )

where

• vold
pub

◦
◦ {0 ..MAX MONEY} is the value that the JoinSplit transfer removes from the transparent value pool ;
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• vnew
pub

◦
◦ {0 ..MAX MONEY} is the value that the JoinSplit transfer inserts into the transparent value pool ;

• rt ◦
◦ B[`Merkle] is an anchor, as de�ned in § 3.3 ‘Transactions, Blocks, and the Block Chain’ on p. 8, for the

output treestate of either a previous block , or a previous JoinSplit transfer in this transaction.

• nfold
1..Nold

◦
◦ B[`PRF][Nold] is the sequence of nulli�ers for the input notes ;

• cmnew
1..Nnew

◦
◦ COMM.Output[Nnew] is the sequence of note commitments for the output notes ;

• epk ◦
◦ KA.Public is a key agreement public key, used to derive the key for encryption of the transmitted notes

ciphertext (§4.10 ‘In-band secret distribution’ on p. 18);

• randomSeed ◦
◦ B[`Seed] is a seed that must be chosen independently at random for each JoinSplit description;

• h1..Nold ◦
◦ B[`PRF][Nold] is a sequence of tags that bind hSig to each ask of the input notes ;

• πJoinSplit ◦
◦ ZKJoinSplit.Proof is the zero-knowledge proof for the JoinSplit statement ;

• Cenc
1..Nnew

◦
◦ Sym.C[Nnew] is a sequence of ciphertext components for the encrypted output notes .

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext .

The value hSig is also computed from randomSeed, nfold
1..Nold , and the joinSplitPubKey of the containing transaction:

hSig := hSigCRH(randomSeed, nfold
1..Nold , joinSplitPubKey).

hSigCRH is instantiated in §5.4.2 ‘hSig Hash Function’ on p. 21.

Consensus rules:

• Elements of a JoinSplit description MUST have the types given above (for example: 0 ≤ vold
pub ≤ MAX MONEY

and 0 ≤ vnew
pub ≤ MAX MONEY).

• Either vold
pub or vnew

pub MUST be zero.

• The proof πJoinSplit MUST be valid given a primary input formed from the other �elds and hSig. I.e. it must

be the case that ZKJoinSplit.Verify((rt, nfold
1..Nold , cmnew

1..Nnew , vold
pub, vnew

pub , hSig, h1..Nold ), πJoinSplit) = 1.

4.4 Sending Notes

In order to send shielded value, the sender constructs a transaction containing one or more JoinSplit descriptions .
This involves �rst generating a new JoinSplitSig key pair:

(joinSplitPrivKey, joinSplitPubKey) R← JoinSplitSig.Gen().

For each JoinSplit description, the sender chooses randomSeed uniformly at random on B[`Seed], and selects the
input notes . At this point there is suf�cient information to compute hSig, as described in the previous section. The
sender also chooses ϕ uniformly at random on B[`ϕ]. Then it creates each output note with index i ◦

◦ {1..Nnew} as
follows:

• Choose rnew
i uniformly at random on B[`r].

• Compute ρnew
i := PRFρϕ(i, hSig).

• Encrypt the note to the recipient transmission key pknew
enc,i, as described in §4.10 ‘In-band secret distribution’

on p. 18, giving the ciphertext component Cenc
i .

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes . Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this speci�cation.

15



After generating all of the JoinSplit descriptions , the sender obtains the dataToBeSigned (§4.6 ‘Non-malleability’
on p. 17), and signs it with the private JoinSplit signing key:

joinSplitSig R← JoinSplitSig.SignjoinSplitPrivKey(dataToBeSigned)

Then the encoded transaction including joinSplitSig is submitted to the network.

4.4.1 Dummy Notes

The �elds in a JoinSplit description allow for Nold input notes , and Nnew output notes . In practice, we may wish to
encode a JoinSplit transfer with fewer input or output notes . This is achieved using dummy notes .

A dummy input note , with index i in the JoinSplit description, is constructed as follows:

• Generate a new random spending key aold
sk,i and derive its paying key aold

pk,i.

• Set vold
i := 0.

• Choose ρold
i uniformly at random on B[`PRF].

• Choose rold
i uniformly at random on B[`r].

• Compute nfold
i := PRFnf

aold
sk,i

(ρold
i ).

• Construct a dummy path pathi for use in the auxiliary input to the JoinSplit statement (this will not be
checked).

• When generating the JoinSplit proof , set enforcei to 0.

A dummy output note is constructed as normal but with zero value, and sent to a random payment address .

4.5 Merkle path validity

The depth of the note commitment tree is dMerkle (de�ned in §5.3 ‘Constants’ on p. 20).

Each node in the incremental Merkle tree is associated with a hash value , which is a byte sequence. The layer
numbered h, counting from layer 0 at the root , has 2h nodes with indices 0 to 2h − 1 inclusive.

Let Mh
i be the hash value associated with the node at index i in layer h.

The nodes at layer dMerkle are called leaf nodes . When a note commitment is added to the tree, it occupies the
leaf node hash value MdMerkle

i for the next available i. As-yet unused leaf nodes are associated with a distinguished
hash value Uncommitted. It is assumed to be infeasible to �nd a preimage note n such that NoteCommitment(n) =
Uncommitted.

The nodes at layers 0 to dMerkle− 1 inclusive are called internal nodes , and are associated with MerkleCRH outputs.
Internal nodes are computed from their children in the next layer as follows: for 0 ≤ h < dMerkle and 0 ≤ i < 2h,

Mh
i := MerkleCRH(Mh+1

2i ,Mh+1
2i+1).

A path from leaf node MdMerkle
i in the incremental Merkle tree is the sequence

[Mh
sibling(h,i) for h from dMerkle down to 1],

where

sibling(h, i) = floor
(

i
2dMerkle−h

)
⊕ 1

Given such a path, it is possible to verify that leaf node MdMerkle
i is in a tree with a given root rt = M0

0.
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4.6 Non-malleability

Bitcoin de�nes several SIGHASH types that cover various parts of a transaction. In Zcash, all of these SIGHASH
types are extended to cover the Zcash-speci�c �elds nJoinSplit, vJoinSplit, and (if present) joinSplitPubKey,
described in §6.1 ‘Encoding of Transactions’ on p. 28. They do not cover the �eld joinSplitSig.

Consensus rule: If nJoinSplit > 0, the transaction MUST NOT use SIGHASH types other than SIGHASH ALL.

Let dataToBeSigned be the hash of the transaction using the SIGHASH ALL SIGHASH type . This excludes all of the
scriptSig �elds in the non-Zcash-speci�c parts of the transaction.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to vnew

pub and vold
pub, and to the other JoinSplit descriptions in the same transaction, an ephemeral

JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private sign-
ing key of this key pair. The corresponding public veri�cation key is included in the transaction encoding as
joinSplitPubKey.

JoinSplitSig is instantiated in §5.4.8 ‘Signatures’ on p. 23.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig �elds are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.VerifyjoinSplitPubKey(dataToBeSigned, joinSplitSig) = 1.

The condition enforced by the JoinSplit statement speci�ed in § 4.9 ‘Non-malleability’ on p. 18 ensures that a
holder of all of aold

sk,1..Nold for each JoinSplit description has authorized the use of the private signing key corre-
sponding to joinSplitPubKey to sign this transaction.

4.7 Balance

A JoinSplit transfer can be seen, from the perspective of the transaction, as an input and an output simultaneously.
vold

pub takes value from the transparent value pool and vnew
pub adds value to the transparent value pool . As a result, vold

pub
is treated like an output value, whereas vnew

pub is treated like an input value.

Note: Unlike original Zerocash [BCG+2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of vold

pub to a JoinSplit description subsumes the functionality of both Mint and Pour. Also, JoinSplit
descriptions are indistinguishable regardless of the number of real input notes .

As stated in §4.3 ‘JoinSplit Descriptions’ on p. 14, either vold
pub or vnew

pub MUST be zero. No generality is lost because,

if a transaction in which both vold
pub and vnew

pub were nonzero were allowed, it could be replaced by an equivalent

one in which min(vold
pub, vnew

pub ) is subtracted from both of these values. This restriction helps to avoid unnecessary
distinctions between transactions according to client implementation.

4.8 Note Commitments and Nulli�ers

A transaction that contains one or more JoinSplit descriptions , when entered into the blockchain, appends to the
note commitment tree with all constituent note commitments . All of the constituent nulli�ers are also entered
into the nulli�er set of the block chain view and mempool . A transaction is not valid if it attempts to add a nulli�er
to the nulli�er set that already exists in the set.

4.9 JoinSplit Statement

A valid instance of πJoinSplit assures that given a primary input :

(rt ◦
◦ B[`Merkle], nfold

1..Nold
◦
◦ B[`PRF][Nold], cmnew

1..Nnew
◦
◦ COMM.Output[Nnew], vold

pub
◦
◦ {0 .. 264 − 1}, vnew

pub
◦
◦ {0 .. 264 − 1},

hSig ◦
◦ B[`hSig], h1..Nold ◦

◦ B[`PRF][Nold]),
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the prover knows an auxiliary input :

(path1..Nold ◦
◦ B[`Merkle][dMerkle][Nold],nold

1..Nold
◦
◦ Note[Nold], aold

sk,1..Nold
◦
◦ B[`ask ][Nold],nnew

1..Nnew
◦
◦ Note[Nold],

ϕ ◦
◦ B[`ϕ], enforce1..Nold ◦

◦ B[Nold]),

where:

for each i ∈ {1..Nold}: nold
i = (aold

pk,i, vold
i , ρold

i , rold
i );

for each i ∈ {1..Nnew}: nnew
i = (anew

pk,i, vnew
i , ρnew

i , rnew
i )

such that the following conditions hold:

Merkle path validity for each i ∈ {1..Nold} | enforcei = 1: pathi must be a valid path of depth dMerkle, as de�ned in
§4.5 ‘Merkle path validity’ on p. 16, from NoteCommitment(nold

i ) to note commitment tree root rt.

Note: Merkle path validity covers both conditions 1. (a) and 1. (d) of the NP statement given in [BCG+2014, section
4.2].

Commitment Enforcement for each i ∈ {1..Nold}, if vold
i , 0 then enforcei = 1.

Balance vold
pub +

Nold∑
i=1

vold
i = vnew

pub +
Nnew∑
i=1

vnew
i ∈ {0 .. 264 − 1}.

Nulli�er integrity for each i ∈ {1..Nnew}: nfold
i = PRFnf

aold
sk,i

(ρold
i ).

Spend authority for each i ∈ {1..Nold}: aold
pk,i = PRFaddr

aold
sk,i

(0).

Non-malleability for each i ∈ {1..Nold}: hi = PRFpk
aold

sk,i

(i, hSig).

Uniqueness of ρnew
i for each i ∈ {1..Nnew}: ρnew

i = PRFρϕ(i, hSig).

Commitment integrity for each i ∈ {1..Nnew}: cmnew
i = NoteCommitment(nnew

i ).

For details of the form and encoding of proofs, see §5.7 ‘Zero-Knowledge Proving System’ on p. 26.

4.10 In-band secret distribution

In order to transmit the secret v, ρ, and r (necessary for the recipient to later spend) and also a memo �eld to the
recipient without requiring an out-of-band communication channel, the transmission key pkenc is used to encrypt
these secrets. The recipient’s possession of the associated key tuple (ask, skenc, addrpk) is used to reconstruct the
original note and memo �eld .

All of the resulting ciphertexts are combined to form a transmitted notes ciphertext .

For both encryption and decryption,

• Let Sym be the encryption scheme instantiated in §5.4.5 ‘Authenticated One-Time Symmetric Encryption’
on p. 22.
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• Let KDF be the Key Derivation Function instantiated in §5.4.7 ‘Key Derivation’ on p. 23.

• Let KA be the key agreement scheme instantiated in §5.4.6 ‘Key Agreement’ on p. 23.

• Let hSig be the value computed for this JoinSplit description in §4.3 ‘JoinSplit Descriptions’ on p. 14.

4.10.1 Encryption

Let pknew
enc,1..Nnew be the transmission keys for the intended recipient addresses of each new note .

Let np1..Nnew be the note plaintexts as de�ned in §5.5 ‘Note Plaintexts and Memo Fields’ on p. 24.

Then to encrypt:

• Generate a new KA (public, private) key pair (epk, esk).

• For i ∈ {1..Nnew},
– Let Penc

i be the raw encoding of npi.

– Let sharedSecreti := KA.Agree(esk, pknew
enc,i).

– Let Kenc
i := KDF(i, hSig, sharedSecreti, epk, pknew

enc,i).

– Let Cenc
i := Sym.EncryptKenc

i
(Penc

i ).

The resulting transmitted notes ciphertext is (epk,Cenc
1..Nnew ).

Note: It is technically possible to replace Cenc
i for a given note with a random (and undecryptable) dummy ci-

phertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit string) to ensure indistinguishability
from other JoinSplit descriptions . This mode of operation raises further security considerations, for example of
how to validate a note received out-of-band, which are not addressed in this document.

4.10.2 Decryption by a Recipient

Let addrpk = (apk, pkenc) be the recipient’s payment address , and let skenc be the recipient’s viewing key.

Let cmnew
1..Nnew be the note commitments of each output coin.

Then for each i ∈ {1..Nnew}, the recipient will attempt to decrypt that ciphertext component as follows:

• Let sharedSecreti := KA.Agree(skenc, epk).

• Let Kenc
i := KDF(i, hSig, sharedSecreti, epk, pknew

enc,i).

• Return DecryptNote(Kenc
i ,Cenc

i , cmnew
i , apk).

DecryptNote(Kenc
i ,Cenc

i , cmnew
i , apk) is de�ned as follows:

• Let Penc
i := Sym.DecryptKenc

i
(Cenc

i ).

• If Penc
i = ⊥, return ⊥.

• Extract npi = (vnew
i , ρnew

i , rnew
i ,memoi) from Penc

i .

• If NoteCommitment((apk, vnew
i , ρnew

i , rnew
i )) , cmnew

i , return ⊥, else return npi.

To test whether a note is unspent in a particular block chain view also requires the spending key ask; the coin is
unspent if and only if nf = PRFnf

ask (ρ) is not in the nulli�er set for that block chain view.
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Notes:

• The decryption algorithm corresponds to step 3 (b) i. and ii. (�rst bullet point) of the Receive algorithm shown
in [BCG+2014, Figure 2].

• A note can change from being unspent to spent on a given block chain view, as transactions are added to that
view. Also, blockchain reorganisations can cause the transaction in which a note was output to no longer be
on the consensus blockchain.

See § 7.7 ‘In-band secret distribution’ on p. 38 for further discussion of the security and engineering rationale
behind this encryption scheme.

5 Concrete Protocol

5.1 Caution

TODO: Explain the kind of things that can go wrong with linkage between abstract and concrete protocol. E.g. § 7.5
‘Internal hash collision attack and fix’ on p. 37

5.2 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a �xed bit length, and are encoded in little-endian
byte order unless otherwise specified.

In bit layout diagrams, each box of the diagram represents a sequence of bits. Diagrams are read from left-to-right,
with lines read from top-to-bottom; the breaking of boxes across lines has no signi�cance. The bit length is given
explicitly in each box, except for the case of a single bit, or for the notation [0]n which represents the sequence of
n zero bits.

The entire diagram represents the sequence of bytes formed by �rst concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant.
Thus the most significant bit in each byte is toward the left of a diagram. Where bit �elds are used, the text will
clarify their position in each case.

5.3 Constants

De�ne:

dMerkle ◦
◦ N := 29

Nold ◦
◦ N := 2

Nnew ◦
◦ N := 2

`Merkle ◦
◦ N := 256

`hSig ◦
◦ N := 256

`PRF ◦
◦ N := 256

`r ◦
◦ N := 256

`Seed ◦
◦ N := 256

`ask
◦
◦ N := 252

`ϕ ◦
◦ N := 252

Uncommitted ◦
◦ B[`Merkle] := [0]`Merkle
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MAX MONEY ◦
◦ N := 2.1 · 1015 (zatoshi )

SlowStartInterval ◦
◦ N := 20000

HalvingInterval ◦
◦ N := 840000

MaxBlockSubsidy ◦
◦ N := 1.25 · 109 (zatoshi )

NumFounderAddresses ◦
◦ N := 48

FoundersFraction ◦
◦ Q := 1

5 .

5.4 Concrete Cryptographic Functions

5.4.1 Merkle Tree Hash Function

MerkleCRH is used to hash incremental Merkle tree hash values . It is instantiated by the SHA-256 compression
function, which takes a 512-bit block and produces a 256-bit hash. [NIST2015]

MerkleCRH(left, right) := SHA256Compress
(

256-bit left 256-bit right
)

.

Note: SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length sequences.

Security requirement: SHA256Compress must be collision-resistant, and it must be infeasible to �nd a preimage
x such that SHA256Compress(x) = [0]256.

5.4.2 hSig Hash Function

hSigCRH is used to compute the value hSig in §4.3 ‘JoinSplit Descriptions’ on p. 14.

hSigCRH(randomSeed, nfold
1..Nold , joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSigInput)

where

hSigInput := 256-bit randomSeed 256-bit nfold
1 ... 256-bit nfold

Nold 256-bit joinSplitPubKey .

BLAKE2b-256(p, x) refers to unkeyed BLAKE2b-256 [ANWW2013] in sequential mode, with an output digest length
of 32 bytes, 16-byte personalization string p, and input x. This is not the same as BLAKE2b-512 truncated to 256
bits, because the digest length is encoded in the parameter block.

Security requirement: BLAKE2b-256(“ZcashComputehSig”, x) must be collision-resistant.

5.4.3 Equihash Generator

EquihashGenn,k is a specialized hash function that maps an input and an index to an output of length n bits. It is

used in §6.4.1 ‘Equihash’ on p. 32.

Let powtag := 64-bit “ZcashPoW” 32-bit n 32-bit k .

Let powcount(g) := 32-bit g .

Let EquihashGenn,k (S, i) := Th+1 ..h+n, where

• m := floor
(512

n

)
;
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• h := (i− 1 mod m) · n;

• T := BLAKE2b-(n ·m)(powtag, S || powcount(floor
(

i−1
m

)
)).

Indices of bits in T are 1-based.

BLAKE2b-`(p, x) refers to unkeyed BLAKE2b-` [ANWW2013] in sequential mode, with an output digest length of
`/8 bytes, 16-byte personalization string p, and input x. This is not the same as BLAKE2b-512 truncated to ` bits,
because the digest length is encoded in the parameter block.

Security requirement: BLAKE2b-`(powtag, x) must generate output that is suf�ciently unpredictable to avoid
short-cuts to the Equihash solution process. It would suf�ce to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices (as in §6.4.1 ‘Equihash’ on p. 32), the number of calls
to BLAKE2b can be reduced by a factor of floor

(512
n

)
in the best case (which is a factor of 2 for n = 200).

5.4.4 Pseudo Random Functions

The four independent PRFs described in §4.1.2 ‘Pseudo Random Functions’ on p. 10 are all instantiated using the
SHA-256 compression function:

PRFaddr
x (t) := SHA256Compress

(
1 1 0 0 252-bit x 8-bit t [0]248

)
PRFnf

ask (ρ) := SHA256Compress
(

1 1 1 0 252-bit ask 256-bit ρ
)

PRFpk
ask (i, hSig) := SHA256Compress

(
0 i-1 0 0 252-bit ask 256-bit hSig

)
PRFρϕ(i, hSig) := SHA256Compress

(
0 i-1 1 0 252-bit ϕ 256-bit hSig

)

Security requirements:

• The SHA-256 compression function must be collision-resistant.

• The SHA-256 compression function must be a PRF when keyed by the bits corresponding to x, ask orϕ in the
above diagrams, with input in the remaining bits.

Note: The �rst four bits –i.e. the most signi�cant four bits of the �rst byte– are used to distinguish different uses
of SHA256Compress, ensuring that the functions are independent. In addition to the inputs shown here, the bits
1011 in this position are used to distinguish uses of the full SHA-256 hash function — see § 5.4.9 ‘Commitment’
on p. 24. (The speci�c bit patterns chosen here are motivated by the possibility of future extensions that either
increase Nold and/or Nnew to 3, or that add an additional bit to ask to encode a new key type, or that require an
additional PRF.)

5.4.5 Authenticated One-Time Symmetric Encryption

Let Sym.K := B[256], Sym.P := B[8·N], and Sym.C := B[8·N].

Let Sym.EncryptK(P) be authenticated encryption using AEAD CHACHA20 POLY1305 [RFC-7539] encryption of
plaintext P ∈ Sym.P, with empty “associated data”, all-zero nonce [0]96, and 256-bit key K ∈ Sym.K.

Similarly, let Sym.DecryptK(C) be AEAD CHACHA20 POLY1305 decryption of ciphertext C ∈ Sym.C, with empty
“associated data”, all-zero nonce [0]96, and 256-bit key K ∈ Sym.K. The result is either the plaintext byte sequence,
or⊥ indicating failure to decrypt.
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Note: The “IETF” de�nition of AEAD CHACHA20 POLY1305 from [RFC-7539] is used; this uses a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original de�nition of ChaCha20.

5.4.6 Key Agreement

The key agreement scheme speci�ed in §4.1.4 ‘Key Agreement’ on p. 11 is instantiated using Curve25519 [Bern2006]
as follows.

Let KA.Public and KA.SharedSecret be the type of Curve25519 public keys (i.e. a sequence of 32 bytes), and let
KA.Private be the type of Curve25519 secret keys.

Let Curve25519(n, q) be the result of point multiplication of the Curve25519 public key represented by the byte
sequence q by the Curve25519 secret key represented by the byte sequence n, as de�ned in [Bern2006, section 2].

Let 9 be the public byte sequence representing the Curve25519 base point.

Let clampCurve25519(x) take a 32-byte sequence x as input and return a byte sequence representing a Curve25519
private key, with bits “clamped” as described in [Bern2006, section 3]: “clear bits 0, 1, 2 of the �rst byte, clear bit
7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has numeric
weight 2b.

De�ne KA.FormatPrivate(x) := clampCurve25519(x).

De�ne KA.Agree(n, q) := Curve25519(n, q).

5.4.7 Key Derivation

The Key Derivation Function speci�ed in § 4.1.5 ‘Key Derivation’ on p. 12 is instantiated using BLAKE2b-256 as
follows:

KDF(i, hSig, sharedSecreti, epk, pknew
enc,i) := BLAKE2b-256(kdftag, kdfinput)

where:

kdftag := 64-bit “ZcashKDF” 8-bit i−1 [0]56

kdfinput := 256-bit hSig 256-bit sharedSecreti 256-bit epk 256-bit pknew
enc,i .

BLAKE2b-256(p, x) refers to unkeyed BLAKE2b-256 [ANWW2013] in sequential mode, with an output digest length
of 32 bytes, 16-byte personalization string p, and input x. This is not the same as BLAKE2b-512 truncated to 256
bits, because the digest length is encoded in the parameter block.

5.4.8 Signatures

JoinSplitSig is speci�ed in §4.1.6 ‘Signatures’ on p. 12.

It is instantiated as Ed25519 [BDL+2012], with the additional requirement that S (the integer represented byS) must
be less than the prime ` = 2252 +27742317777372353535851937790883648493, otherwise the signature is considered
invalid. Ed25519 is de�ned as using SHA-512 internally.

The encoding of a signature is:

256-bit R 256-bit S

where R and S are as de�ned in [BDL+2012].

The encoding of a public key is as de�ned in [BDL+2012].
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5.4.9 Commitment

The commitment scheme COMM speci�ed in §4.1.7 ‘Commitment’ on p. 13 is instantiated using SHA-256 as follows:

COMMr(v, apk, ρ) := SHA256
(

1 0 1 1 0 0 0 0 256-bit apk 64-bit v 256-bit ρ 256-bit r
)

.

Note: The leading byte of the SHA256 input is 0xB0.

TODO: Security requirements on SHA-256.

5.5 Note Plaintexts and Memo Fields

Transmitted notes are stored on the blockchain in encrypted form, together with a note commitment cm.

The note plaintexts associated with a JoinSplit description are encrypted to the respective transmission keys
pknew

enc,1..Nnew , and the result forms part of a transmitted notes ciphertext (see § 4.10 ‘In-band secret distribution’
on p. 18 for further details).

Each note plaintext (denoted np) consists of (v, ρ, r,memo).

The �rst three of these �elds are as de�ned earlier. memo is a 512-byte memo �eld associated with this note .

The usage of the memo �eld is by agreement between the sender and recipient of the note . The memo �eld
SHOULD be encoded either as:

• a UTF-8 human-readable string [Unicode], padded by appending zero bytes; or

• an arbitrary sequence of 512 bytes starting with a byte value of 0xF5 or greater, which is therefore not a valid
UTF-8 string.

In the former case, wallet software is expected to strip any trailing zero bytes and then display the resulting UTF-8
string to the recipient user, where applicable. Incorrect UTF-8-encoded byte sequences should be displayed as
replacement characters (U+FFFD).

In the latter case, the contents of the memo �eld SHOULD NOT be displayed. A start byte of 0xF5 is reserved
for use by automated software by private agreement. A start byte of 0xF6 or greater is reserved for use in future
Zcash protocol extensions.

The encoding of a note plaintext consists of, in order:

8-bit 0x00 64-bit v 256-bit ρ 256-bit r memo (512 bytes)

• A byte, 0x00, indicating this version of the encoding of a note plaintext .

• 8 bytes specifying v.

• 32 bytes specifying ρ.

• 32 bytes specifying r.
• 512 bytes specifying memo.

5.6 Encodings of Addresses and Keys

This section describes how Zcash encodes payment addresses , viewing keys , and spending keys .

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding . This byte sequence can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[Bitcoin-Base58].
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SHA-256 compression outputs are always represented as sequences of 32 bytes.

The language consisting of the following encoding possibilities is pre�x-free.

5.6.1 Transparent Payment Addresses

Transparent payment addresses are either P2SH (Pay to Script Hash) [BIP-13] or P2PKH (Pay to Public Key Hash)
[Bitcoin-P2PKH] addresses.

The raw encoding of a P2SH address consists of:

8-bit 0x1C 8-bit 0xBD 160-bit script hash

• Two bytes [0x1C,0xBD], indicating this version of the raw encoding of a P2SH address on the production
network. (Addresses on the test network use [0x1C,0xBA] instead.)

• 160 bits specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

8-bit 0x1C 8-bit 0xB8 160-bit public key hash

• Two bytes [0x1C,0xB8], indicating this version of the raw encoding of a P2PKH address on the production
network. (Addresses on the test network use [0x1D,0x25] instead.)

• 160 bits specifying a public key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash [NIST2015]
of an uncompressed ECDSA key encoding.

Notes:

• In Bitcoin a single byte is used for the version �eld identifying the address type. In Zcash two bytes are used.
For addresses on the production network, this and the encoded length cause the �rst two characters of the
Base58Check encoding to be �xed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does
not imply that a transparent Zcash address can be parsed identically to a Bitcoin address just by removing
the “t”.)

• Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].

5.6.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both the production and test networks.

5.6.3 Shielded Payment Addresses

A payment address consists of apk and pkenc. apk is a SHA-256 compression output. pkenc is a Bern2006 public key,
for use with the encryption scheme de�ned in §4.10 ‘In-band secret distribution’ on p. 18.

The raw encoding of a payment address consists of:

8-bit 0x16 8-bit 0x9A 256-bit apk 256-bit pkenc
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• Two bytes [0x16,0x9A], indicating this version of the raw encoding of a Zcash payment address on the
production network. (Addresses on the test network use [0x16,0xB6] instead.)

• 256 bits specifying apk.

• 256 bits specifying pkenc, using the normal encoding of a Curve25519 public key [Bern2006].

Note: For addresses on the production network, the lead bytes and encoded length cause the �rst two characters
of the Base58Check encoding to be �xed as “zc”. For the test network, the �rst two characters are �xed as “zt”.

5.6.4 Spending Keys

A spending key consists of ask, which is a sequence of 252 bits.

The raw encoding of a spending key consists of, in order:

8-bit 0xAB 8-bit 0x36 [0]4 252-bit ask

• Two bytes [0xAB,0x36], indicating this version of the raw encoding of a Zcash spending key on the pro-
duction network. (Addresses on the test network use [0xAC,0x08] instead.)

• 4 zero padding bits.

• 252 bits specifying ask.

The zero padding occupies the most signi�cant 4 bits of the third byte.

Notes:

• If an implementation represents ask internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRFaddr, PRFnf , and PRFpk without need for bit-shifting.
Future key representations may make use of these padding bits.

• For addresses on the production network, the lead bytes and encoded length cause the �rst two characters
of the Base58Check encoding to be �xed as “SK”. For the test network, the �rst two characters are �xed as
“ST”.

5.7 Zero-Knowledge Proving System

Zcash uses zk-SNARKs generated by its fork of libsnark [libsnark-fork] with the proving system described in
[BCTV2015], which is a re�nement of the systems in [PGHR2013] and [BCGTV2013].

The pairing implementation is ALT BN128.

Let q = 21888242871839275222246405745257275088696311157297823662689037894645226208583.

Let r = 21888242871839275222246405745257275088548364400416034343698204186575808495617.

Let b = 3.

(q and r are prime.)

The pairing is of type G1 × G2 → GT , where:

• G1 is a Barreto–Naehrig curve over Fq with equation y2 = x3 + b. This curve has embedding degree 12 with
respect to r.
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• G2 is the subgroup of order r in the twisted Barreto-Naehrig curve over Fq2 with equation y2 = x3 + b
x·i . We

represent elements of Fq2 as polynomials a1 · t + a0 ◦
◦ Fq[t], modulo the irreducible polynomial t2 + 1.

• GT is µr , the subgroup of rth roots of unity in F∗q12 .

Let P1 ◦
◦ G1 = (1, 2).

Let P2 ◦
◦ G2 = (11559732032986387107991004021392285783925812861821192530917403151452391805634· t +

10857046999023057135944570762232829481370756359578518086990519993285655852781,
4082367875863433681332203403145435568316851327593401208105741076214120093531· t +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

P1 and P2 are generators of G1 and G2 respectively.

A proof consists of a tuple (πA
◦
◦ G1, π

′
A

◦
◦ G1, πB

◦
◦ G2, π

′
B

◦
◦ G1, πC

◦
◦ G1, π

′
C

◦
◦ G1, πK

◦
◦ G1, πH

◦
◦ G1). It is

computed using the parameters above as described in [BCTV2015, Appendix B].

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
arithmetic circuit verifying the JoinSplit statement , or its expression as a Rank 1 Constraint System, are not speci-
�ed here. In practice it will be necessary to use the speci�c proving and veri�cation keys generated for the Zcash
production block chain (see §5.8 ‘JoinSplit Parameters’ on p. 28), and a proving system implementation that is
interoperable with the Zcash fork of libsnark , to ensure compatibility.

5.7.1 Encoding of Points

De�ne I2OSP ◦
◦ (k ◦

◦ N)×{0 .. 256k−1} → {0 .. 255}[k] such that I2OSP`(n) is the sequence of ` bytes representing n
in big-endian order.

For a point P ◦
◦ G1 = (xP , yP ):

• The �eld elements xP and yP
◦
◦ Fq are represented as integers x and y ◦

◦ {0 .. q−1}.

• Let ỹ = y mod 2.

• P is encoded as 0 0 0 0 0 0 1 1-bit ỹ 256-bit I2OSP32(x) .

For a point P ◦
◦ G2 = (xP , yP ):

• A �eld elementw ◦
◦ Fq2 is represented as a polynomial aw,1 ·t+aw,0 ◦

◦ Fq[t] modulo t2+1. De�ne FE2IP ◦
◦ Fq2 →

{0 .. q2−1} such that FE2IP(w) = aw,1 · q + aw,0.

• Let x = FE2IP(xP ), y = FE2IP(yP ), and y′ = FE2IP(−yP ).

• Let ỹ =

{
1, if y > y′

0, otherwise.

• P is encoded as 0 0 0 0 1 0 1 1-bit ỹ 512-bit I2OSP64(x) .

Non-normative notes:

• The use of big-endian byte order is different from the encoding of most other integers in this protocol. The
above encodings are consistent with the de�nition of EC2OSP for compressed curve points in [IEEE2004,
section 5.5.6.2]. The LSB compressed form (i.e. EC2OSP-XL) is used for points on G1, and the SORT com-
pressed form (i.e. EC2OSP-XS) for points on G2.

• Testing y > y′ for the compression of G2 points is equivalent to testing whether (ay,1, ay,0) > (a−y,1, a−y,0)
in lexicographic order.
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• Algorithms for decompressing points from the above encodings are given in [IEEE2000, Appendix A.12.8]
for G1, and [IEEE2004, Appendix A.12.11] for G2.

When computing square roots in Fq or Fq2 in order to decompress a point encoding, the implementation MUST
NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.7.2 Encoding of Zero-Knowledge Proofs

A proof is encoded by concatenating the encodings of its elements:

264-bit πA 264-bit π′A 520-bit πB 264-bit π′B 264-bit πC 264-bit π′C 264-bit πK 264-bit πH

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2015, Appendix B], the veri�er MUST check, for the encoding
of each element, that:

• the lead byte is of the required form;

• the remaining bytes encode a big-endian representation of an integer in {0 .. q−1} or (in the case of πB )
{0 .. q2−1};

• the encoding represents a point on the relevant curve.

5.8 JoinSplit Parameters

For the testnet in release v0.11.2.z9 and later, the SHA-256 hashes of the proving key and verifying key for the Join-
Split statement , encoded in libsnark format, are:

226913bbdc48b70834f8e044d194ddb61c8e15329f67cdc6014f4e5ac11a82ab z9-proving.key
4c151c562fce2cdee55ac0a0f8bd9454eb69e6a0db9a8443b58b770ec29b37f5 z9-verifying.key

The Zcash production block chain will use parameters obtained by a multi-party computation, which has yet to
be performed.

6 Consensus Changes from Bitcoin

6.1 Encoding of Transactions

The Zcash transaction format is as follows:
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Bytes Name Data Type Description

4 version uint32 t Transaction version number; either 1
or 2.

Varies tx in count compactSize uint Number of transparent inputs in this
transaction.

Varies tx in tx in Transparent inputs, encoded as in
Bitcoin.

Varies tx out count compactSize uint Number of transparent outputs in this
transaction.

Varies tx out tx out Transparent outputs, encoded as in
Bitcoin.

4 lock time uint32 t A Unix epoch time or block number,
encoded as in Bitcoin.

Varies † nJoinSplit compactSize uint The number of JoinSplit descriptions
in vJoinSplit.

1802 ·
nJoinSplit †

vJoinSplit JoinSplitDescription
[nJoinSplit]

A sequence of JoinSplit descriptions ,
each encoded as described in § 6.2
‘Encoding of JoinSplit Descriptions’
on p. 29.

32 ‡ joinSplitPubKey char[32] An encoding of a JoinSplitSig public
veri�cation key.

64 ‡ joinSplitSig char[64] A signature on a pre�x of the trans-
action encoding, to be veri�ed using
joinSplitPubKey.

† The nJoinSplit and vJoinSplit �elds are present if and only if version > 1.

‡ The joinSplitPubKey and joinSplitSig �elds are present if and only if version > 1 and nJoinSplit > 0.

The encoding of joinSplitPubKey and the data to be signed are speci�ed in §4.6 ‘Non-malleability’ on p. 17.

The changes relative to Bitcoin version 1 transactions as described in [Bitcoin-Format] are:

• The transaction version number can be either 1 or 2. A version 1 transaction is equivalent to a version 2
transaction with nJoinSplit = 0. Software that parses blocks MUST NOT assume, when an encoded block
starts with an version �eld representing a value other than 1 or 2 (e.g. future versions potentially introduced
by hard forks), that it will be parseable according to this format.

• The nJoinSplit, vJoinSplit, joinSplitPubKey, and joinSplitSig �elds have been added.

Software that creates transactions SHOULD use version 1 for transactions with no JoinSplit descriptions .

Note: A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated
with support for OP CHECKSEQUENCEVERIFY as speci�ed in [BIP-68]. Zcash was forked from Bitcoin v0.11.2 and does
not currently support BIP 68, or the related BIPs 9, 112 and 113.

6.2 Encoding of JoinSplit Descriptions

An abstract JoinSplit description, as described in §3.4 ‘JoinSplit Transfers and Descriptions’ on p. 9, is encoded
in a transaction as an instance of a JoinSplitDescription type as follows:
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Bytes Name Data Type Description

8 vpub old uint64 t A value vold
pub that the JoinSplit transfer removes from

the transparent value pool .

8 vpub new uint64 t A value vnew
pub that the JoinSplit transfer inserts into the

transparent value pool .

32 anchor char[32] A merkle root rt of the note commitment tree at some
block height in the past, or the merkle root produced
by a previous JoinSplit transfer in this transaction.

64 nullifiers char[32][Nold] A sequence of nulli�ers of the input notes nfold
1..Nold .

64 commitments char[32][Nnew] A sequence of note commitments for the output
notes cmnew

1..Nnew .

32 ephemeralKey char[32] A Curve25519 public key epk.

32 randomSeed char[32] A 256-bit seed that must be chosen independently at
random for each JoinSplit description.

64 vmacs char[32][Nold] A sequence of message authentication tags h1..Nold

that bind hSig to each ask of the JoinSplit description.

296 zkproof char[296] An encoding of the zero-knowledge proof πJoinSplit
(see §5.7.2 ‘Encoding of Zero-Knowledge Proofs’ on
p. 28).

1202 encCiphertexts char[601][Nnew] A sequence of ciphertext components for the en-
crypted output notes , Cenc

1..Nnew .

The ephemeralKey and encCiphertexts �elds together form the transmitted notes ciphertext .

6.3 Block Headers

The Zcash block header format is as follows:
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Bytes Name Data Type Description

4 nVersion uint32 t The block version number indicates which set
of block validation rules to follow. The cur-
rent and only de�ned block version number for
Zcash is 4.

32 hashPrevBlock char[32] A SHA-256d hash in internal byte order of the
previous block ’s header. This ensures no previ-
ous block can be changed without also chang-
ing this block ’s header.

32 hashMerkleRoot char[32] A SHA-256d hash in internal byte order. The
merkle root is derived from the hashes of all
transactions included in this block , ensuring
that none of those transactions can be modi-
�ed without modifying the header.

32 hashReserved char[32] A reserved �eld which should be ignored.

4 nTime uint32 t The block time is a Unix epoch time when the
miner started hashing the header (according to
the miner). This MUST be greater than or equal
to the median time of the previous 11 blocks. A
full node MUST NOT accept blocks with head-
ers more than two hours in the future accord-
ing to its clock.

4 nBits uint32 t An encoded version of the target threshold this
block ’s header hash must be less than or equal
to, in the same nBits format used by Bitcoin.
[Bitcoin-nBits]

32 nNonce char[32] An arbitrary �eld miners change to modify the
header hash in order to produce a hash below
the target threshold.

3 solutionSize compactSize uint The size of an Equihash solution in bytes (al-
ways 1344).

1344 solution char[1344] The Equihash solution, which MUST be valid
according to §6.4.1 ‘Equihash’ on p. 32.

The changes relative to Bitcoin version 4 blocks as described in [Bitcoin-Block] are:

• The block version number MUST be 4. Previous versions are not supported. Software that parses blocks
MUST NOT assume, when an encoded block starts with an nVersion �eld representing a value other than 4
(e.g. future versions potentially introduced by hard forks), that it will be parseable according to this format.

• The hashReserved, solutionSize, and solution �elds have been added.

• The type of the nNonce �eld has changed from uint32 t to char[32].

Notes:

• There is no relation between the values of the version �eld of a transaction, and the nVersion �eld of a
block header.

• Like other serialized �elds of type compactSize uint, the solutionSize �eld MUST be encoded with the
minimum number of bytes (3 in this case), and other encodings MUST be rejected. This is necessary to avoid
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a potential attack in which a miner could test several distinct encodings of each Equihash solution against
the dif�culty �lter, rather than only the single intended encoding.

6.4 Proof of Work

Zcash uses Equihash [BK2016] as its Proof of Work. Motivations for changing the Proof of Work from SHA-256d
used by Bitcoin are described in [WG2016].

A block satis�es the Proof of Work if and only if:

• The solution �eld encodes a valid Equihash solution according to §6.4.1 ‘Equihash’ on p. 32.

• The block header satis�es the dif�culty check according to §6.4.2 ‘Difficulty filter’ on p. 33.

6.4.1 Equihash

An instance of the Equihash algorithm is parameterized by positive integers n and k, such that n is a multiple of
k + 1. We assume k ≥ 3.

The Equihash parameters for the production and test networks are n = 200, k = 9.

The Generalized Birthday Problem is de�ned as follows: given a sequence X1..N of n-bit strings, �nd 2k distinct

Xij such that
2k⊕

j=1
Xij = 0.

In Equihash, N = 2 n
k+1+1, and the sequence X1..N is derived from the block header and a nonce:

Let powheader := 32-bit nVersion 256-bit hashPrevBlock 256-bit hashMerkleRoot

256-bit hashReserved 32-bit nTime 32-bit nBits

256-bit nNonce

For i ∈ {1 .. N}, let Xi = EquihashGenn,k (powheader, i).

EquihashGen is instantiated in §5.4.3 ‘Equihash Generator’ on p. 21.

De�ne I2BSP ◦
◦ (u ◦

◦ N) × {0 .. 2u−1} → B[u] such that I2BSPu(x) is the sequence of u bits representing x in big-
endian order.

A valid Equihash solution is then a sequence i ◦
◦ {1 .. N}2

k
that satis�es the following conditions:

Generalized Birthday condition
2k⊕

j=1
Xij = 0.

Algorithm Binding conditions For all r ∈ {1 .. k−1}, for all w ∈ {0 .. 2k−r−1}:

•
2r⊕

j=1
Xiw·2r+j

has n·r
k+1 leading zeroes; and

• iw·2r+1..w·2r+2r−1 < iw·2r+2r−1+1..w·2r+2r lexicographically.

Note: This does not include a dif�culty condition, because here we are de�ning validity of an Equihash solution
independent of dif�culty.

An Equihash solution with n = 200 and k = 9 is encoded in the solution �eld of a block header as follows:
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I2BSP21(i1 − 1) I2BSP21(i2 − 1) · · · I2BSP21(i512 − 1)

Recall from §5.2 ‘Integers, Bit Sequences, and Endianness’ on p. 20 that bits in the above diagram are ordered
from most to least signi�cant in each byte. For example, if the �rst 3 elements of i are [69, 42, 221], then the corre-
sponding bit array is:

I2BSP21(68) I2BSP21(41) I2BSP21(221 − 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8-bit 0 8-bit 2 8-bit 32 8-bit 0 8-bit 10 8-bit 127 8-bit 255 · · ·

and so the �rst 7 bytes of solution would be [0, 2, 32, 0, 10, 127, 255].

Note: I2BSP is big-endian, while integer �eld encodings in powheader and in the instantiation of EquihashGen are
little-endian. The rationale for this is that little-endian serialization of block headers is consistent with Bitcoin,
but using little-endian ordering of bits in the solution encoding would require bit-reversal (as opposed to only
shifting).

6.4.2 Dif�culty �lter

The dif�culty �lter is unchanged from Bitcoin, and is calculated using SHA-256d on the whole block header (in-
cluding solutionSize and solution).

6.4.3 Dif�culty adjustment

Zcash uses a dif�culty adjustment algorithm based on DigiShield v3/v4, with simpli�cations and altered parame-
ters, to adjust dif�culty to target the desired 2.5-minute block time. Unlike Bitcoin, the dif�culty adjustment occurs
after every block.

TODO: Describe the algorithm.

6.5 Calculation of Block Subsidy and Founders’ Reward

§ 3.7 ‘Block Subsidy and Founders’ Reward’ on p. 10 de�nes the block subsidy, miner subsidy, and Founders’
Reward . Their amounts in zatoshi are calculated from the block height using the formulae below. The constants
SlowStartInterval, HalvingInterval, MaxBlockSubsidy, and FoundersFraction are instantiated in §5.3 ‘Constants’ on p. 20.

SlowStartShift ◦
◦ N := SlowStartInterval

2

SlowStartRate ◦
◦ N := MaxBlockSubsidy

SlowStartInterval

Halving(height) := floor
(

height− SlowStartShift
HalvingInterval

)

BlockSubsidy(height) :=


SlowStartRate · height, if height < SlowStartInterval

2

SlowStartRate · (height + 1), if SlowStartInterval
2 ≤ height < SlowStartInterval

floor
(

MaxBlockSubsidy
2Halving(height)

)
, otherwise

FoundersReward(height) :=
{

BlockSubsidy(height) · FoundersFraction, if height < SlowStartShift + HalvingInterval
0, otherwise

MinerSubsidy(height) := BlockSubsidy(height) − FoundersReward(height).
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6.6 Coinbase outputs

The Founders’ Reward is paid by a transparent output in the coinbase transaction, to one of NumFounderAddresses
transparent addresses, depending on the block height .

For the production network, FounderAddressList1..NumFounderAddresses is:

[ “t3Vz22vK5z2LcKEdg16Yv4FFneEL1zg9ojd”, “t3cL9AucCajm3HXDhb5jBnJK2vapVoXsop3”,
“t3fqvkzrrNaMcamkQMwAyHRjfDdM2xQvDTR”, “t3TgZ9ZT2CTSK44AnUPi6qeNaHa2eC7pUyF”,
“t3SpkcPQPfuRYHsP5vz3Pv86PgKo5m9KVmx”, “t3Xt4oQMRPagwbpQqkgAViQgtST4VoSWR6S”,
“t3ayBkZ4w6kKXynwoHZFUSSgXRKtogTXNgb”, “t3adJBQuaa21u7NxbR8YMzp3km3TbSZ4MGB”,
“t3K4aLYagSSBySdrfAGGeUd5H9z5Qvz88t2”, “t3RYnsc5nhEvKiva3ZPhfRSk7eyh1CrA6Rk”,
“t3Ut4KUq2ZSMTPNE67pBU5LqYCi2q36KpXQ”, “t3ZnCNAvgu6CSyHm1vWtrx3aiN98dSAGpnD”,
“t3fB9cB3eSYim64BS9xfwAHQUKLgQQroBDG”, “t3cwZfKNNj2vXMAHBQeewm6pXhKFdhk18kD”,
“t3YcoujXfspWy7rbNUsGKxFEWZqNstGpeG4”, “t3bLvCLigc6rbNrUTS5NwkgyVrZcZumTRa4”,
“t3VvHWa7r3oy67YtU4LZKGCWa2J6eGHvShi”, “t3eF9X6X2dSo7MCvTjfZEzwWrVzquxRLNeY”,
“t3esCNwwmcyc8i9qQfyTbYhTqmYXZ9AwK3X”, “t3M4jN7hYE2e27yLsuQPPjuVek81WV3VbBj”,
“t3gGWxdC67CYNoBbPjNvrrWLAWxPqZLxrVY”, “t3LTWeoxeWPbmdkUD3NWBquk4WkazhFBmvU”,
“t3P5KKX97gXYFSaSjJPiruQEX84yF5z3Tjq”, “t3f3T3nCWsEpzmD35VK62JgQfFig74dV8C9”,
“t3Rqonuzz7afkF7156ZA4vi4iimRSEn41hj”, “t3fJZ5jYsyxDtvNrWBeoMbvJaQCj4JJgbgX”,
“t3Pnbg7XjP7FGPBUuz75H65aczphHgkpoJW”, “t3WeKQDxCijL5X7rwFem1MTL9ZwVJkUFhpF”,
“t3Y9FNi26J7UtAUC4moaETLbMo8KS1Be6ME”, “t3aNRLLsL2y8xcjPheZZwFy3Pcv7CsTwBec”,
“t3gQDEavk5VzAAHK8TrQu2BWDLxEiF1unBm”, “t3Rbykhx1TUFrgXrmBYrAJe2STxRKFL7G9r”,
“t3aaW4aTdP7a8d1VTE1Bod2yhbeggHgMajR”, “t3YEiAa6uEjXwFL2v5ztU1fn3yKgzMQqNyo”,
“t3g1yUUwt2PbmDvMDevTCPWUcbDatL2iQGP”, “t3dPWnep6YqGPuY1CecgbeZrY9iUwH8Yd4z”,
“t3QRZXHDPh2hwU46iQs2776kRuuWfwFp4dV”, “t3enhACRxi1ZD7e8ePomVGKn7wp7N9fFJ3r”,
“t3PkLgT71TnF112nSwBToXsD77yNbx2gJJY”, “t3LQtHUDoe7ZhhvddRv4vnaoNAhCr2f4oFN”,
“t3fNcdBUbycvbCtsD2n9q3LuxG7jVPvFB8L”, “t3dKojUU2EMjs28nHV84TvkVEUDu1M1FaEx”,
“t3aKH6NiWN1ofGd8c19rZiqgYpkJ3n679ME”, “t3MEXDF9Wsi63KwpPuQdD6by32Mw2bNTbEa”,
“t3WDhPfik343yNmPTqtkZAoQZeqA83K7Y3f”, “t3PSn5TbMMAEw7Eu36DYctFezRzpX1hzf3M”,
“t3R3Y5vnBLrEn8L6wFjPjBLnxSUQsKnmFpv”, “t3Pcm737EsVkGTbhsu2NekKtJeG92mvYyoN” ]

For the test network, FounderAddressList1..NumFounderAddresses is:

[ “t2UNzUUx8mWBCRYPRezvA363EYXyEpHokyi”, “t2N9PH9Wk9xjqYg9iin1Ua3aekJqfAtE543”,
“t2NGQjYMQhFndDHguvUw4wZdNdsssA6K7x2”, “t27ktmq1kbeCWiQ5TZ7w5npSzcdbBmTB7v6”,
“t2GcBttAKD2WTHka8HyGc2dfvVTKYZUfHmJ”, “t2Q3vxWaD9LrdqUE8Xd9Ddjpr9pUQ2aGotK”,
“t2TTfWDsYu998fHWzVP9Gns4fgxXXRi1Wzu”, “t2KS6R4MMWdSBMjLCiw2iMyhWGRQPmyRqDn”,
“t2Q2ELrgotWv3Eec6LEtMMiiQ8dtW38u8Tj”, “t2AEgJA88vTWAKqxJDFUEJWyHUtQAZi5G1D”,
“t2HCSdmpq1TQKksuwPQevwAzPTgfJ2rkMbG”, “t2HQCPFAUQaUdJWHPhg5pPBxit7inaJzubE”,
“t2Fzqvq8Y9e6Mn3JNPb982aYsLmq4b5HmhH”, “t2HEz7YZQqDUgC5h4y2WSD3mWneqJNVRjjJ”,
“t2GCR1SCk687Eeo5NEZ23MLsms7JjVWBgfG”, “t2KyiPR9Lztq2w1w747X6W4nkUMAGL8M9KN”,
“t2UxymadyxSyVihmbq7S1yxw5dCBqJ1S4jT”, “t2AVeMy7fdmTcJhckqiKRG8B7F1vccEhSqU”,
“t26m7LwihQzD2sH7ZVhYpPJM5j7kzwbfKW9”, “t2DgwUNTe7NxuyPU6fxsB5xJXap3E4yWXrN”,
“t2U6funcXA11fC9SZehyvUL3rk3Vhuh7fzS”, “t284JhyS8LGM72Tx1porSqwrcq3CejthP1p”,
“t29egu8QcpzKeLoPLqWS6QVMnUUPQdF6eNm”, “t29LqD9p9D3B26euBwFi6mfcWu8HPA38VNs”,
“t28GsAMCxAyLy85XaasddDzaYFTtfewr86y”, “t2GV44QyaikQPLUfm6oTfZnw71LLjnR7gDG”,
“t2U2QzNLQ1jtAu4L6xxVnRXLBsQpQvGRR2g”, “t2QKGr5PNan7nrwDgseyHMN9NFeeuUjCh8b”,
“t2AfS8u6HwBeJpKpbuxztvRjupKQDXqnrwa”, “t2CTRQUViQd3CWMhnKhFnUHqDLUyTxmWhJs”,
“t2CbM9EqszNURqh1UXZBXYhwp1R4GwEhWRE”, “t2LM7uYiAsKDU42GNSnMwDxbZ8s1DowQzYH”,
“t2AgvT35LHR378AE3ouz6xKMhkTLHLJC6nD”, “t285EAQXUVyi4NMddJv2QqTrnv45GRMbP8e”,
“t2EpMRCD5b8f2DCQ37npNULcpZhkjC8muqA”, “t2BCmWXrRPiCeQTpizSWKKRPM5X6PS7umDY”,
“t2DN7X6wDFn5hYKBiBmn3Z98st419yaTVTH”, “t2QJj8HeCwQ6mHwqekxxDLZntYpZTHNU62t”,
“t2QdHBR1Yciqn4j8gpS8DcQZZtYetKvfNj3”, “t2E5cpLA1ey5VNxFNcuopeQMq2rH2NHiPdu”,
“t2EVRGtzjFAyz8CF8ndvLuiJu7qZUfDa93H”, “t2KoQDk3BSFadBkuaWdLwchFuQamzw9RE4L”,
“t2FnR3yhTmuiejEJeu6qpidWTghRd1HpjLt”, “t2BAuBAAospDc9d1u5nNGEi6x4NRJBD2PQ2”,
“t2RtKrLCGcyPkm4a4APg1YY9Wu2m4R2PgrB”, “t28aUbSteZzBq2pFgj1K1XNZRZP5mMMyakV”,
“t2Urdy1ERfkvsFuy6Z4BkhvYGzWdmivfAFR”, “t2ADinR4JrvCMd4Q1XGALPajzFrirqvhED6” ]

Each address representation in FounderAddressList denotes a transparent P2SH multisig address.
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Let SlowStartShift be de�ned as in the previous section.

De�ne:

FounderAddressChangeInterval := ceiling
(

SlowStartShift + HalvingInterval
NumFounderAddresses

)
FounderAddressIndex(height) := 1 + floor

(
height

FounderAddressChangeInterval

)
.

Let RedeemScriptHash(height) be the standard redeem script hash, as de�ned in [Bitcoin-Multisig], for the P2SH
multisig address with Base58Check representation given by FounderAddressList FounderAddressIndex(height)

Consensus rule: A coinbase transaction for block height height ∈ {1 .. SlowStartShift + HalvingInterval− 1}MUST
include at least one output that pays exactly FoundersReward(height) zatoshi with a standard P2SH script of the form
OP HASH160 RedeemScriptHash(height) OP EQUAL as its scriptPubKey.

TODO: Coinbase maturity rule. TODO: Any tx with a coinbase input must have no transparent outputs (vout).

Notes:

• No Founders’ Reward is required to be paid for height ≥ SlowStartShift + HalvingInterval (i.e. after the �rst
halving), or for height = 0 (i.e. the genesis block).

• The Founders’ Reward addresses are not treated specially in any other way, and there can be other outputs to
them, in coinbase transactions or otherwise. In particular, it is valid for a coinbase transaction with height ∈
{1 ..SlowStartShift + HalvingInterval− 1} to have other outputs, possibly to the same address, that do not meet
the criterion in the above consensus rule, as long as at least one output meets it.

6.7 Changes to the Script System

The OP CODESEPARATOR opcode has been disabled. This opcode also no longer affects the calculation of signature
hashes.

6.8 Bitcoin Improvement Proposals

In general, Bitcoin Improvement Proposals (BIPs) do not apply to Zcash unless otherwise speci�ed in this section.

All of the BIPs referenced below should be interpreted by replacing “BTC”, or “bitcoin” used as a currency unit, with
“ZEC”; and “satoshi” with “zatoshi”.

The following BIPs apply, otherwise unchanged, to Zcash: [BIP-11], [BIP-14], [BIP-31], [BIP-35], [BIP-37], [BIP-61].

The following BIPs apply starting from the genesis block , i.e. any activation rules or exceptions for particular blocks
in the Bitcoin block chain are to be ignored: [BIP-16], [BIP-30], [BIP-34], [BIP-65], [BIP-66].

[BIP-13] applies with the changes to address version bytes described in §5.6.1 ‘Transparent Payment Addresses’
on p. 25.

7 Differences from the Zerocash paper

7.1 Transaction Structure

Zerocash introduces two new operations, which are described in the paper as new transaction types, in addition
to the original transaction type of the cryptocurrency on which it is based (e.g. Bitcoin).
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In Zcash, there is only the original Bitcoin transaction type, which is extended to contain a sequence of zero or
more Zcash-speci�c operations.

This allows for the possibility of chaining transfers of shielded value in a single Zcash transaction, e.g. to spend a
shielded note that has just been created. (In Zcash, we refer to value stored in UTXOs as transparent , and value
stored in JoinSplit transfer output notes as shielded .) This was not possible in the Zerocash design without using
multiple transactions. It also allows transparent and shielded transfers to happen atomically — possibly under the
control of nontrivial script conditions, at some cost in distinguishability.

TODO: Describe changes to signing.

7.2 Memo Fields

Zcash adds a memo �eld sent from the creator of a JoinSplit description to the recipient of each output note . This
feature is described in more detail in §5.5 ‘Note Plaintexts and Memo Fields’ on p. 24.

7.3 Uni�cation of Mints and Pours

In the original Zerocash protocol, there were two kinds of transaction relating to shielded notes :

• a “Mint” transaction takes value from transparent UTXOs as input and produces a new shielded note as
output.

• a “Pour” transaction takes up to Nold shielded notes as input, and produces up to Nnew shielded notes and a
transparent UTXO as output.

Only “Pour” transactions included a zk-SNARK proof.

In Zcash, the sequence of operations added to a transaction (described in §7.1 ‘Transaction Structure’ on p. 35)
consists only of JoinSplit transfers . A JoinSplit transfer is a Pour operation generalized to take a transparent UTXO
as input, allowing JoinSplit transfers to subsume the functionality of Mints. An advantage of this is that a Zcash
transaction that takes input from an UTXO can produce up to Nnew output notes , improving the indistinguishability
properties of the protocol. A related change conceals the input arity of the JoinSplit transfer: an unused (zero-value)
input is indistinguishable from an input that takes value from a note .

This uni�cation also simpli�es the �x to the Faerie Gold attack described below, since no special case is needed
for Mints.

7.4 Faerie Gold attack and �x

When a shielded note is created in Zerocash, the creator is supposed to choose a new ρ value at random. The
nulli�er of the note is derived from its spending key (ask) and ρ. The note commitment is derived from the recipient
address component apk, the value v, and the commitment trapdoor r, as well as ρ. However nothing prevents
creating multiple notes with different v and r (hence different note commitments) but the same ρ.

An adversary can use this to mislead a note recipient, by sending two notes both of which are veri�ed as valid by
Receive (as de�ned in [BCG+2014, Figure 2]), but only one of which can be spent.

We call this a “Faerie Gold” attack — referring to various Celtic legends in which faeries pay mortals in what appears
to be gold, but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable
things [LG2004].

This attack does not violate the security de�nitions given in [BCG+2014]. The issue could be framed as a problem
either with the de�nition of Completeness, or the de�nition of Balance:

• The Completeness property asserts that a validly received note can be spent provided that its nulli�er does
not appear on the ledger. This does not take into account the possibility that distinct notes , which are
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validly received, could have the same nulli�er. That is, the security de�nition depends on a protocol de-
tail –nulli�ers– that is not part of the intended abstract security property, and that could be implemented
incorrectly.

• The Balance property only asserts that an adversary cannot obtain more funds than they have minted or
received via payments. It does not prevent an adversary from causing others’ funds to decrease. In a Faerie
Gold attack, an adversary can cause spending of a note to reduce (to zero) the effective value of another
note for which the attacker does not know the spending key, which violates an intuitive conception of global
balance.

These problems with the security de�nitions need to be repaired, but doing so is outside the scope of this speci-
�cation. Here we only describe how Zcash addresses the immediate attack.

It would be possible to address the attack by requiring that a recipient remember all of the ρ values for all notes they
have ever received, and reject duplicates (as proposed in [GGM2016]). However, this requirement would interfere
with the intended Zcash feature that a holder of a spending key can recover access to (and be sure that they are
able to spend) all of their funds, even if they have forgotten everything but the spending key.

Instead, Zcash enforces that an adversary must choose distinct values for each ρ, by making use of the fact that
all of the nulli�ers in JoinSplit descriptions that appear in a valid block chain view must be distinct. This is true
regardless of whether the nulli�ers corresponded to real or dummy notes (see § 4.4.1 ‘Dummy Notes’ on p. 16).
The nulli�ers are used as input to hSigCRH to derive a public value hSig which uniquely identi�es the transaction,
as described in §4.3 ‘JoinSplit Descriptions’ on p. 14. (hSig was already used in Zerocash in a way that requires it
to be unique in order to maintain indistinguishability of JoinSplit descriptions ; adding the nulli�ers to the input
of the hash used to calculate it has the effect of making this uniqueness property robust even if the transaction
creator is an adversary.)

The ρ value for each output note is then derived from a random private seed ϕ and hSig using PRFρϕ. The correct
construction of ρ for each output note is enforced by the JoinSplit statement (see § 4.9 ‘Uniqueness of ρnew

i ’ on
p. 18).

Now even if the creator of a JoinSplit description does not choose ϕ randomly, uniqueness of nulli�ers and col-
lision resistance of both hSigCRH and PRFρ will ensure that the derived ρ values are unique, at least for any two
JoinSplit descriptions that get into a valid block chain view. This is suf�cient to prevent the Faerie Gold attack.

7.5 Internal hash collision attack and �x

The Zerocash security proof requires that the composition of COMMr and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMr and COMMs in section 5.1 of the paper
did not meet the de�nition of a binding commitment at a 128-bit security level. Speci�cally, the internal hash of
apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker, with
a work factor on the order of 264, to �nd distinct values of ρ with colliding outputs of the truncated hash, and
therefore the same note commitment . This would have allowed such an attacker to break the Balance property
by double-spending notes , potentially creating arbitrary amounts of currency for themself [HW2016].

Zcash uses a simpler construction with a single SHA-256 evaluation for the commitment. The motivation for the
nested construction in Zerocash was to allow Mint transactions to be publically veri�ed without requiring a zero-
knowledge proof (as described under step 3 in [BCG+2014, section 1.3]). Since Zcash combines “Mint” and “Pour”
transactions into a generalized JoinSplit transfer which always uses a zero-knowledge proof , it does not require
the nesting. A side bene�t is that this reduces the number of SHA256Compress evaluations needed to compute each
note commitment from three to two, saving a total of four SHA256Compress evaluations in the JoinSplit statement .

Note: Zcash note commitments are not statistically hiding, so Zcash does not support the “everlasting anonymity”
property described in [BCG+2014, section 8.1], even when used as described in that section. While it is possible to
de�ne a statistically hiding, computationally binding commitment scheme for this use at a 128-bit security level,
the overhead of doing so within the JoinSplit statement was not considered to justify the bene�ts.
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7.6 Changes to PRF inputs and truncation

The format of inputs to the PRFs instantiated in §5.4.4 ‘Pseudo Random Functions’ on p. 22 has changed relative
to Zerocash. There is also a requirement for another PRF, PRFρ, which must be domain-separated from the others.

In the Zerocash protocol, ρold
i is truncated from 256 to 254 bits in the input to PRFsn (which corresponds to PRFnf

in Zcash). Also, hSig is truncated from 256 to 253 bits in the input to PRFpk. These truncations are not taken into
account in the security proofs.

Both truncations affect the validity of the proof sketch for Lemma D.2 in the proof of Ledger Indistinguishability in
[BCG+2014, Appendix D]. In more detail:

• In the argument relating H and a2, it is stated that in a2, “for each i ∈ {1, 2}, sni := PRFsn
ask (ρ) for a random

(and not previously used) ρ”. It is also argued that “the calls to PRFsn
ask are each by de�nition unique”. The latter

assertion depends on the fact that ρ is “not previously used”. However, the argument is incorrect because the
truncated input to PRFsn

ask , i.e. [ρ]254, may repeat even if ρ does not.

• In the same argument, it is stated that “with overwhelming probability, hSig is unique”. In fact what is required
to be unique is the truncated input to PRFpk, i.e. [hSig]253 = [CRH(pksig)]253. In practice this value will be
unique under a plausible assumption on CRH provided that pksig is chosen randomly, but no formal argument
for this is presented.

Note that ρ is truncated in the input to PRFsn but not in the input to COMMr, which further complicates the analysis.

As further evidence that it is essential for the proofs to explicitly take any such truncations into account, consider
a slightly modi�ed protocol in which ρ is truncated in the input to COMMr but not in the input to PRFsn. In that
case, it would be possible to violate balance by creating two notes for which ρ differs only in the truncated bits.
These notes would have the same note commitment but different nulli�ers , so it would be possible to spend the
same value twice.

For resistance to Faerie Gold attacks as described in §7.4 ‘Faerie Gold attack and fix’ on p. 36, Zcash depends on
collision resistance of both hSigCRH and PRFρ (instantiated using BLAKE2b-256 and SHA256Compress respectively).
Collision resistance of a truncated hash does not follow from collision resistance of the original hash, even if the
truncation is only by one bit. This motivated avoiding truncation along any path from the inputs to the computation
of hSig to the uses of ρ.

Since the PRFs are instantiated using SHA256Compress which has an input block size of 512 bits (of which 256 bits
are used for the PRF input and 4 bits are used for domain separation), it was necessary to reduce the size of the
PRF key to 252 bits. The key is set to ask in the case of PRFaddr, PRFnf , and PRFpk, and to ϕ (which does not exist in
Zerocash) for PRFρ, and so those values have been reduced to 252 bits. This is preferable to requiring reasoning
about truncation, and 252 bits is quite suf�cient for security of these cryptovalues.

7.7 In-band secret distribution

Zerocash speci�ed ECIES (referencing Certicom’s SEC 1 standard) as the encryption scheme used for the in-band
secret distribution. This has been changed to a scheme based on Curve25519 key agreement, and the authenti-
cated encryption algorithm AEAD CHACHA20 POLY1305. This scheme is still loosely based on ECIES, and on the
crypto box seal scheme de�ned in libsodium [libsodium-Seal].

The motivations for this change were as follows:

• The Zerocash paper did not specify the curve to be used. We believe that Curve25519 has signi�cant side-
channel resistance, performance, implementation complexity, and robustness advantages over most other
available curve choices, as explained in [Bern2006].

• ECIES permits many options, which were not speci�ed. There are at least –counting conservatively– 576
possible combinations of options and algorithms over the four standards (ANSI X9.63, IEEE Std 1363a-2004,
ISO/IEC 18033-2, and SEC 1) that de�ne ECIES variants [MAEA2010].
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• Although the Zerocash paper states that ECIES satis�es key privacy (as de�ned in [BBDP2001]), it is not clear
that this holds for all curve parameters and key distributions. For example, if a group of non-prime order
is used, the distribution of ciphertexts could be distinguishable depending on the order of the points rep-
resenting the ephemeral and recipient public keys. Public key validity is also a concern. Curve25519 key
agreement is de�ned in a way that avoids these concerns due to the curve structure and the “clamping” of
private keys.

• Unlike the DHAES/DHIES proposal on which it is based [ABR1999], ECIES does not require a representation
of the sender’s ephemeral public key to be included in the input to the KDF, which may impair the security
properties of the scheme. (The Std 1363a-2004 version of ECIES [IEEE2004] has a “DHAES mode” that allows
this, but the representation of the key input is underspeci�ed, leading to incompatible implementations.)
The scheme we use has both the ephemeral and recipient public key encodings –which are unambiguous
for Curve25519– and also hSig and a nonce as described below, as input to the KDF. Note that because pkenc
is included in the KDF input, being able to break the Elliptic Curve Dif�e-Hellman Problem on Curve25519
(without breaking AEAD CHACHA20 POLY1305 as an authenticated encryption scheme or BLAKE2b-256 as
a KDF) would not help to decrypt the transmitted notes ciphertext unless pkenc is known or guessed.

• The KDF also takes a public seed hSig as input. This can be modeled as using a different “randomness extrac-
tor” for each JoinSplit transfer, which limits degradation of security with the number of JoinSplit transfers .
This facilitates security analysis as explained in [DGKM2011] — see section 7 of that paper for a security proof
that can be applied to this construction under the assumption that single-block BLAKE2b-256 is a “weak
PRF”. Note that hSig is authenticated, by the ZK proof, as having been chosen with knowledge of aold

sk,1..Nold , so
an adversary cannot modify it in a ciphertext from someone else’s transaction for use in a chosen-ciphertext
attack without detection.

• The scheme used by Zcash includes an optimization that uses the same ephemeral key (with different nonces)
for the two ciphertexts encrypted in each JoinSplit description.

The security proofs of [ABR1999] can be adapted straightforwardly to the resulting scheme. Although DHAES as
de�ned in that paper does not pass the recipient public key or a public seed to the hash function H , this does not
impair the proof because we can considerH to be the specialization of our KDF to a given recipient key and seed.
It is necessary to adapt the “HDH independence” assumptions and the proof slightly to take into account that the
ephemeral key is reused for two encryptions.

Note that the 256-bit key for AEAD CHACHA20 POLY1305 maintains a high concrete security level even under at-
tacks using parallel hardware [Bern2005] in the multi-user setting [Zave2012]. This is especially necessary because
the privacy of Zcash transactions may need to be maintained far into the future, and upgrading the encryption
algorithm would not prevent a future adversary from attempting to decrypt ciphertexts encrypted before the up-
grade. Other cryptovalues that could be attacked to break the privacy of transactions are also suf�ciently long to
resist parallel brute force in the multi-user setting: ask is 252 bits, and skenc is no shorter than ask.

7.8 Omission in Zerocash security proof

The abstract Zerocash protocol requires PRFaddr only to be a PRF; it is not speci�ed to be collision-resistant. This
reveals a �aw in the proof of the Balance property.

Suppose that an adversary �nds a collision on PRFaddr such that a1
sk and a2

sk are distinct spending keys for the same
apk. Because the note commitment is to apk, but the nulli�er is computed from ask (and ρ), the adversary is able to
double-spend the note, once with each ask. This is not detected because each spend reveals a different nulli�er.
The JoinSplit statements are still valid because they can only check that the ask in the witness is some preimage of
the apk used in the note commitment .

The error is in the proof of Balance in [BCG+2014, Appendix D.3]. For the “A violates Condition I” case, the proof
says:

“(i) If cmold
1 = cmold

2 , then the fact that snold
1 , snold

2 implies that the witness a contains two distinct openings of
cmold

1 (the �rst opening contains (aold
sk,1, ρ

old
1 ), while the second opening contains (aold

sk,2, ρ
old
2 )). This violates the

binding property of the commitment scheme COMM.”

39



In fact the openings do not contain aold
sk,i; they contain aold

pk,i.

A similar error occurs in the argument for the “A violates Condition II” case.

The �aw is not exploitable for the actual instantiations of PRFaddr in Zerocash and Zcash, which are collision-
resistant assuming that SHA256Compress is.

The proof can be straightforwardly repaired. The intuition is that we can rely on collision resistance of PRFaddr

(on both its arguments) to argue that distinctness of aold
sk,1 and aold

sk,2, together with constraint 1(b) of the JoinSplit

statement (see §4.9 ‘Spend authority’ on p. 18), implies distinctness of aold
pk,1 and aold

pk,2, therefore distinct openings
of the note commitment when Condition I or II is violated.

7.9 Miscellaneous

• The paper de�nes a note as ((apk, pkenc), v, ρ, r, s, cm), whereas this speci�cation de�nes it as (apk, v, ρ, r). The
instantiation of COMMs in section 5.1 of the paper did not actually use s, and neither does the new instantiation
of COMM in Zcash. pkenc is also not needed as part of a note : it is not an input to COMM nor is it constrained
by the Zerocash POUR statement or the Zcash JoinSplit statement . cm can be computed from the other �elds.

• The length of proof encodings given in the paper is 288 bytes. This differs from the 296 bytes speci�ed in
§ 5.7.2 ‘Encoding of Zero-Knowledge Proofs’ on p. 28, because both the x-coordinate and compressed y-
coordinate of each point need to be represented. Although it is possible to encode a proof in 288 bytes by
making use of the fact that elements of Fq can be represented in 254 bits, we prefer to use the standard
formats for points de�ned in [IEEE2004]. The fork of libsnark used by Zcash uses this standard encoding
rather than the less ef�cient (uncompressed) one used by upstream libsnark .

• The range of monetary values differs. In Zcash, this range is {0 ..MAX MONEY}; in Zerocash it is {0 .. 264 − 1}.
(The JoinSplit statement still only directly enforces that the sum of amounts in a given JoinSplit transfer is in
the latter range; this enforcement is technically redundant given that the Balance property holds.)
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9 Change history

2016.0-beta-1.10

• Update reference to the Equihash paper [BK2016]. (The newer version has no algorithmic changes, but the
section discussing potential ASIC implementations is substantially expanded.)

• Clarify the discussion of proof size in “Differences from the Zerocash paper”.
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2016.0-beta-1.9

• Add Founders’ Reward addresses for the production network.

• Change “protected ” terminology to “shielded ”.

2016.0-beta-1.8

• Revise the lead bytes for transparent P2SH and P2PKH addresses, and reencode the testnet Founders’ Reward
addresses.

• Add a section on which BIPs apply to Zcash.

• Specify that OP CODESEPARATOR has been disabled, and no longer affects signature hashes.

• Change the representation type of vpub old and vpub new to uint64 t. (This is not a consensus change
because the type of vold

pub and vnew
pub was already speci�ed to be {0 ..MAX MONEY}; it just better re�ects the

implementation.)

• Correct the representation type of the block nVersion �eld to uint32 t.

2016.0-beta-1.7

• Clarify the consensus rule for payment of the Founders’ Reward , in response to an issue raised by the NCC
audit.

2016.0-beta-1.6

• Fix an error in the de�nition of the sortedness condition for Equihash: it is the sequences of indices that are
sorted, not the sequences of hashes.

• Correct the number of bytes in the encoding of solutionSize.

• Update the section on encoding of transparent addresses. (The precise pre�xes are not decided yet.)

• Clarify why BLAKE2b-` is different from truncated BLAKE2b-512.

• Clarify a note about SU-CMA security for signatures.

• Add a note about PRFnf corresponding to PRFsn in Zerocash.

• Add a paragraph about key length in §7.7 ‘In-band secret distribution’ on p. 38.

• Add acknowledgements for John Tromp, Paige Peterson, Maureen Walsh, Jay Graber, and Jack Gavigan.

2016.0-beta-1.5

• Update the Founders’ Reward address list.

• Add some clari�cations based on Eli Ben-Sasson’s review.

2016.0-beta-1.4

• Specify the block subsidy, miner subsidy, and the Founders’ Reward .

• Specify coinbase transaction outputs to Founders’ Reward addresses.

• Improve notation (for example “·” for multiplication and “T [`]” for sequence types) to avoid ambiguity.
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2016.0-beta-1.3

• Correct the omission of solutionSize from the block header format.

• Document that compactSize uint encodings must be canonical.

• Add a note about conformance language in the introduction.

• Add acknowledgements for Solar Designer, Ling Ren and Alison Stevenson, and for the NCC Group and Coin-
spect security audits.

2016.0-beta-1.2

• Remove GeneralCRH in favour of specifying hSigCRH and EquihashGen directly in terms of BLAKE2b.

• Correct the security requirement for EquihashGen.

2016.0-beta-1.1

• Add a speci�cation of abstract signatures.

• Clarify what is signed in the “Sending Notes” section.

• Specify ZK parameter generation as a randomized algorithm, rather than as a distribution of parameters.

2016.0-beta-1

• Major reorganisation to separate the abstract cryptographic protocol from the algorithm instantiations.

• Add type declarations.

• Add a “High-level Overview” section.

• Add a section specifying the zero-knowledge proving system and the encoding of proofs. Change the en-
coding of points in proofs to follow IEEE Std 1363[a].

• Add a section on consensus changes from Bitcoin, and the speci�cation of Equihash.

• Complete the “Differences from the Zerocash paper” section.

• Correct the Merkle tree depth to 29.

• Change the length of memo �elds to 512 bytes.

• Switch the JoinSplit signature scheme to Ed25519, with consequent changes to the computation of hSig.

• Fix the lead bytes in payment address and spending key encodings to match the implemented protocol.

• Add a consensus rule about the ranges of vold
pub and vnew

pub .

• Clarify cryptographic security requirements and added de�nitions relating to the in-band secret distribution.

• Add various citations: the “Fixing Vulnerabilities in the Zcash Protocol” and “Why Equihash?” blog posts, sev-
eral crypto papers for security de�nitions, the Bitcoin whitepaper, the CryptoNote whitepaper, and several
references to Bitcoin documentation.

• Reference the extended version of the Zerocash paper rather than the Oakland proceedings version.

• Add JoinSplit transfers to the Concepts section.

• Add a section on Coinbase Transactions.

• Add acknowledgements for Jack Grigg, Simon Liu, Ariel Gabizon, jl777, Ben Blaxill, Alex Balducci, and Jake
Tarren.

• Fix a Makefile compatibility problem with the escaping behaviour of echo.
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• Switch to biber for the bibliography generation, and add backreferences.

• Make the date format in references more consistent.

• Add visited dates to all URLs in references.

• Terminology changes.

2016.0-alpha-3.1

• Change main font to Quattrocento.

2016.0-alpha-3

• Change version numbering convention (no other changes).

2.0-alpha-3

• Allow anchoring to any previous output treestate in the same transaction, rather than just the immediately
preceding output treestate .

• Add change history.

2.0-alpha-2

• Change from truncated BLAKE2b-512 to BLAKE2b-256.

• Clarify endianness, and that uses of BLAKE2b are unkeyed.

• Minor correction to what SIGHASH types cover.

• Add “as intended for the Zcash release of summer 2016” to title page.

• Require PRFaddr to be collision-resistant (see §7.8 ‘Omission in Zerocash security proof’ on p. 39).

• Add speci�cation of path computation for the incremental Merkle tree .

• Add a note in §4.9 ‘Merkle path validity’ on p. 18 about how this condition corresponds to conditions in the
Zerocash paper.

• Changes to terminology around keys.

2.0-alpha-1

• First version intended for public review.
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