
Zcash Protocol Specification
Version 2.0-draft-2

Sean Bowe — Daira Hopwood — Taylor Hornby

March 2, 2016

Contents

1 Introduction 3

2 Caution 3

3 Conventions 3

3.1 Integers, Bit Sequences, and Endianness . 3

3.2 Cryptographic Functions . 3

4 Concepts 4

4.1 Payment Addresses, Viewing Keys, and Spending Keys . 4

4.2 Coins . 5

4.2.1 Coin Commitments . 5

4.2.2 Serial numbers . 5

4.2.3 Coin plaintexts and memo fields . 5

4.3 Coin Commitment Tree . 6

4.4 Spent Serials Map . 6

4.5 The Blockchain . 7

5 Pour Transfers and Descriptions 7

5.1 Pour Circuit and Proofs . 8

6 In-band secret distribution 10

6.1 Encryption . 10

6.2 Decryption by a Recipient . 11

6.3 Decryption by a Viewing Key Holder . 11

7 Encoding Addresses, Keys, and Coin plaintexts 12

7.1 Transparent Payment Addresses . 12

1

7.2 Transparent Private Keys . 13

7.3 Private Payment Addresses . 13

7.4 Spending Keys . 13

7.5 Viewing Keys . 13

7.6 Coin Plaintexts . 14

8 Differences from the Zerocash paper 14

8.1 Unification of Mints and Pours . 14

8.2 Faerie Gold attack and fix . 14

8.3 Internal hash collision attack and fix . 14

8.4 Viewing keys . 15

8.5 Changes to PRF inputs and truncation . 15

8.6 In-band secret distribution . 15

8.7 Miscellaneous . 15

9 Acknowledgements 15

10 References 15

2

1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [2] with some adjustments
to terminology, functionality and performance. It bridges the existing transparent payment scheme used by Bitcoin
with a confidential payment scheme protected by zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs).

Changes from the original Zerocash are highlighted in magenta.

2 Caution

Zcash security depends on consensus. Should your program diverge from consensus, its security is weakened or
destroyed. The cause of the divergence doesn’t matter: it could be a bug in your program, it could be an error in
this documentation which you implemented as described, or it could be you do everything right but other software
on the network behaves unexpectedly. The specific cause will not matter to the users of your software whose wealth
is lost.

Having said that, a specification of intended behaviour is essential for security analysis, understanding of the protocol,
and maintenance of Zcash Core and related software. If you find any mistake in this specification, please contact
<security@z.cash>. While the production Zcash network has yet to be launched, please feel free to do so in public
even if you believe the mistake may indicate a security weakness.

3 Conventions

3.1 Integers, Bit Sequences, and Endianness

All integers visible in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded as big-endian
(except in the definition of AEAD CHACHA20 POLY1305 [7] which internally uses length fields encoded as little-
endian).

In bit layout diagrams, each box of the diagram represents a sequence of bits. If the content of the box is a
byte sequence, it is implicitly converted to a sequence of bits using big endian order. The bit sequences are then
concatenated in the order shown from left to right, and the result is converted to a sequence of bytes, again using
big-endian order.

Nathan: An example would help here. It would be illustrative if it had a few differently-sized fields.

Trailingk (x), where k is an integer and x is a bit sequence, returns the trailing (final) k bits of its input.

The notation 1..N, used as a subscript, means the sequence of values with indices 1 through N inclusive. For example,
anew

pk,1..Nnew means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew].

3.2 Cryptographic Functions

CRH is a collision-resistant hash function. In Zcash, the SHA-256 compression function is used which takes a 512-
bit block and produces a 256-bit hash. This is different from the SHA-256 function, which hashes arbitrary-length
strings. [8]

PRFx is a pseudo-random function seeded by x. Five independent PRFx are needed in our scheme: PRFaddr
x , PRFsn

x ,
PRFpk

x , PRFρx, and PRFdk
x .

It is required that PRFsn
x and PRFρx be collision-resistant across all x — i.e. it should not be feasible to find

(x, y) , (x′, y′) such that PRFsn
x (y) = PRFsn

x′ (y′), and similarly for PRFρ.

3

In Zcash, the SHA-256 compression function is used to construct all five of these functions. The bits 0000, 0001,
001x, 010x, and 011x are included (respectively) within the blocks that are hashed, ensuring that the functions are
independent.

Nathan: Note: If we change input or output arity (i.e. Nold or Nnew), we need to be aware of how it is associated with
this bit-packing.

PRFaddr
x (t) := CRH

(
0 0 0 0 252 bit x 0254 2 bit t

)
sn = PRFsn

ask (ρ) := CRH
(

0 0 0 1 252 bit ask 256 bit ρ
)

hi = PRFpk
ask (i, hSig) := CRH

(
0 0 1 i-1 252 bit ask 256 bit hSig

)
ρ

new
i = PRFρϕ(i, hSig) := CRH

(
0 1 0 i-1 252 bit ϕ 256 bit hSig

)
Kdisclose

i = PRFdk
avk (i, hSig) := CRH

(
0 1 1 i-1 252 bit avk 256 bit hSig

)

4 Concepts

4.1 Payment Addresses, Viewing Keys, and Spending Keys

A key tuple (addrsk, addrvk, addrpk) is generated by users who wish to receive payments under this scheme. The
viewing key addrvk is derived from the spending key addrsk, and the payment address addrpk is derived from the
viewing key.

The following diagram depicts the relations between key components. Arrows point from a component to any other
component(s) that can be derived from it.

pka encpk

encskvka

ska

Payment address

Viewing key

Spending key

Note that a spending key holder can derive the other components, and a viewing key holder can derive (apk, pkenc),
even though these components are not formally part of the respective keys. Implementations MAY cache these
derived components, provided that they are deleted if the corresponding source component is deleted.

The composition of payment addresses, viewing keys, and spending keys is a cryptographic protocol detail that
should not normally be exposed to users. However, user-visible operations should be provided to:

• obtain a payment address from a viewing key; and

• obtain a payment address or viewing key from a spending key.

4

ask and avk are each 252 bits. apk, skenc, and pkenc, are each 256 bits.

avk, apk, skenc, and pkenc are derived as follows:

avk := Trailing252(PRFaddr
ask (0))

apk := PRFaddr
avk (1)

skenc := clampCurve25519(PRFaddr
ask (2))

pkenc := Curve25519(skenc, 9)

where clampCurve25519 performs the clamping of Curve25519 private key bits, Curve25519 performs point multiplica-
tion, and 9 is the public string representing a base point, all as defined in [3].

Users can accept payment from multiple parties with a single addrpk and the fact that these payments are destined
to the same payee is not revealed on the blockchain, even to the paying parties. However if two parties collude to
compare a addrpk they can trivially determine they are the same. In the case that a payee wishes to prevent this
they should create a distinct payment address for each payer.

4.2 Coins

A coin (denoted c) is a tuple (apk, v, ρ, r) which represents that a value v is spendable by the recipient who holds the
spending key ask corresponding to apk, as described in the previous section.

• apk is a 32-byte authorization public key of the recipient.

• v is a 64-bit unsigned integer representing the value of the coin in zatoshi (1 ZEC = 108 zatoshi).

• ρ is a 32-byte PRFsn
ask preimage.

• r is a 32-byte COMM trapdoor.

r is randomly generated by the sender. ρ is generated from a random seed ϕ using PRFρϕ. Only a commitment to
these values is disclosed publicly, which allows the tokens r and ρ to blind the value and recipient except to those
who possess these tokens.

Note that the value s described as being part of a coin in the Zerocash paper [2] is not encoded because the
instantiation of COMMs does not use it.

4.2.1 Coin Commitments

The underlying v and apk are blinded with ρ and r using the collision-resistant hash function SHA256. The resulting
hash cm = CoinCommitment(c).

cm := SHA256
(

0xF0 256 bit apk 64 bit v 256 bit ρ 256 bit r
)

4.2.2 Serial numbers

A serial number (denoted sn) equals PRFsn
ask (ρ). A coin is spent by proving knowledge of ρ and ask in zero knowledge

while disclosing sn, allowing sn to be used to prevent double-spending.

4.2.3 Coin plaintexts and memo fields

Transmitted coins are stored on the blockchain in encrypted form, together with a coin commitment cm.

5

The coin plaintexts associated with a Pour description are encrypted to the respective transmission keys pknew
enc,1..Nnew ,

and the result forms part of a transmitted coins ciphertext (see section “In-band secret distribution” for further
details).

Each coin plaintext (denoted cp) consists of (apk, v, ρ, r,memo).

The first four of these fields are as defined earlier. memo is a 64-byte memo field associated with this coin.

The usage of the memo field is by agreement between the sender and recipient of the coin. It should be encoded as
a UTF-8 human-readable string [4], padded with zero bytes. Wallet software is expected to strip any trailing zero
bytes and then display the resulting UTF-8 string to the recipient user, where applicable. Incorrect UTF-8-encoded
byte sequences should be displayed as replacement characters (U+FFFD). This does not preclude uses of the memo
field by automated software, but specification of such usage is not in the scope of this document.

4.3 Coin Commitment Tree

cm1

?

rt

cm2 cm3 cm4 cm5 ?

The coin commitment tree is an incremental merkle tree of depth d used to store coin commitments that Pour
transfers produce. Just as the unspent transaction output set (UTXO) used in Bitcoin, it is used to express the
existence of value and the capability to spend it. However, unlike the UTXO, it is not the job of this tree to protect
against double-spending, as it is append-only.

Blocks in the blockchain are associated (by all nodes) with the root of this tree after all of its constituent Pour
descriptions’ coin commitments have been entered into the tree associated with the previous block.

4.4 Spent Serials Map

Transactions insert serial numbers into a spent serial numbers map which is maintained alongside the UTXO by all
nodes.

Eli: a tx is just a string, so it doesn’t insert anything. Rather, nodes process tx’s and the “good” ones lead to the addition
of serials to the spent serials map.

Transactions that attempt to insert a serial number into this map that already exists within it are invalid as they
are attempting to double-spend.

Eli: After defining transaction, one should define what a legal tx is (this definition depends on a particular blockchain
[view]) and only then can one talk about “attempts” of transactions, and insertions of serial numbers into the spent serials
map.

6

4.5 The Blockchain

At a given point in time, the blockchain view of each full node consists of a sequence of one or more valid blocks.
Each block consists of a sequence of one or more transactions. In a given node’s blockchain view, treestates are
chained in an obvious way:

• The input treestate of the first block is the empty treestate.

• The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The final treestate of a block is the output treestate of its last transaction.

An anchor is a Merkle tree root of a treestate, and uniquely identifies that treestate given the assumed security
properties of the Merkle tree’s hash function.

Each transaction is associated with a sequence of Pour descriptions. TODO: They also have a transparent value flow
that interacts with the Pour vold

pub and vnew
pub . Inputs and outputs are associated with a value.

The total value of the outputs must not exceed the total value of the inputs.

The anchor of the first Pour description in a transaction must refer to some earlier block’s final treestate.

The anchor of each subsequent Pour description may refer either to some earlier block’s final treestate, or to the
output treestate of the immediately preceding Pour description.

These conditions act as constraints on the blocks that a full node will accept into its blockchain view.

We rely on Bitcoin-style consensus for full nodes to eventually converge on their views of valid blocks, and therefore
of the sequence of treestates in those blocks.

Value pool Transaction inputs insert value into a value pool, and transaction outputs remove value from this pool.
The remaining value in the pool is available to miners as a fee.

5 Pour Transfers and Descriptions

A Pour description is data included in a block that describes a Pour transfer, i.e. a confidential value transfer. This
kind of value transfer is the primary Zerocash-specific operation performed by transactions; it uses, but should not
be confused with, the POUR circuit used for the zk-SNARK proof and verification.

A Pour transfer spends Nold coins cold
1..Nold and creates Nnew coins cnew

1..Nnew . Zcash transactions have an additional
field vpour, which is a sequence of Pour descriptions.

Each Pour description consists of:

vpub old which is a value vold
pub that the Pour transfer removes from the value pool.

vpub new which is a value vnew
pub that the Pour transfer inserts into the value pool.

anchor which is a merkle root rt of the coin commitment tree at some block height in the past, or the merkle
root produced by a previous pour in this transaction. Sean: We need to be more specific here.

scriptSig which is a script that creates conditions for acceptance of a Pour description in a transaction.

scriptPubKey which is a script used to satisfy the conditions of the scriptSig.

serials which is an Nold size sequence of serials snold
1..Nold .

7

commitments which is a Nnew size sequence of coin commitments cmnew
1..Nnew .

ephemeralKey which is a Curve25519 public key epk.

encCiphertexts which is a Nnew size sequence of ciphertext components, Cenc
1..Nnew .

discloseCiphertexts which is a Nold size sequence of ciphertext components, Cdisclose
1..Nold .

sharedCiphertext which is the ciphertext component Cshared.
(The preceding four fields together form the transmitted coins ciphertext.)

randomSeed which is a random 256-bit seed randomSeed.

vmacs which is a Nold size sequence of message authentication tags h1..Nold that bind hSig to each ask of the
Pour description.

zkproof which is the zero-knowledge proof πPOUR.

TODO: Describe case where there are fewer than Nold real input coins.

Computation of hSig Given a Pour description, we define:

hSig := SHA256
(

0xF1 256 bit snold
0

... 256 bit snold
Nold−1 randomSeed scriptPubKey

)
Merkle root validity A Pour description is valid if rt is a coin commitment tree root found in either the blockchain
or a merkle root produced by inserting the coin commitments of a previous Pour description in the transaction to
the coin commitment tree identified by that previous Pour description’s anchor.

Non-malleability A Pour description is valid if the script formed by appending scriptPubKey to scriptSig
returns true. The scriptSig is cryptographically bound to πPOUR.

Balance A Pour transfer can be seen, from the perspective of the transaction, as an input and an output simulta-
neously. vold

pub takes value from the value pool and vnew
pub adds value to the value pool. As a result, vold

pub is treated like
an output value, whereas vnew

pub is treated like an input value.

Note that unlike original Zerocash [2], Zcash does not have a distinction between Mint and Pour transfers. The ad-
dition of vold

pub to a Pour description subsumes the functionality of Mint. Also, Pour descriptions are indistinguishable
regardless of the number of real input coins.

Commitments and Serials A transaction that contains one or more Pour descriptions, when entered into the
blockchain, appends to the coin commitment tree with all constituent coin commitments. All of the constituent serial
numbers are also entered into the spent serial numbers map of the blockchain view and mempool. A transaction is
not valid if it attempts to add a serial number to the spent serial numbers map that already exists in the map.

5.1 Pour Circuit and Proofs

In Zcash, Nold and Nnew are both 2.

A valid instance of πPOUR assures that given a primary input:

(rt, snold
1..Nold , cmnew

1..Nnew , vold
pub, vnew

pub , hSig, h1..Nold ,Cenc
1..Nnew ,Cdisclose

1..Nold ,Cshared),

there exists a witness of auxiliary input:

8

(path1..Nold , cold
1..Nold , aold

sk,1..Nold , aold
vk,1..Nold , cpnew

1..Nnew ,ϕ,Kenc
1..Nnew ,Kdisclose

1..Nold ,Kshared, pknew
enc,1..Nnew , esk)

where:

for each i ∈ {1..Nold}: cold
i = (aold

pk,i, vold
i , ρold

i , rold
i);

for each i ∈ {1..Nnew}: cpnew
i = (anew

pk,i, vnew
i , ρnew

i , rnew
i ,memoi), and Penc

i is a raw encoding of cpnew
i ;

such that the following conditions hold:

Merkle path validity for each i ∈ {1..Nold} | vold
i , 0: pathi must be a valid path of depth d from

CoinCommitment(cold
i) to coin commitment tree root rt.

Balance vold
pub +

Nold∑
i=1

vold
i = vnew

pub +
Nnew∑
i=1

vnew
i .

Serial integrity for each i ∈ {1..Nnew}: snold
i = PRFsn

aold
sk,i

(ρold
i).

Spend authority for each i ∈ {1..Nold}: aold
vk,i = PRFaddr

aold
sk,i

(0) and aold
pk,i = PRFaddr

aold
vk,i

(1).

Non-malleability for each i ∈ {1..Nold}: hi = PRFpk
aold

sk,i

(i, hSig).

Uniqueness of ρnew
i for each i ∈ {1..Nnew}: ρnew

i = PRFρϕ(i, hSig).

Commitment integrity for each i ∈ {1..Nnew}: cmnew
i = CoinCommitment(cnew

i).

Cenc integrity for each i ∈ {1..Nnew}: Cenc
i = SymEncryptKenc

i
(Penc

i).

Cdisclose integrity for each i ∈ {1..Nold}: Cdisclose
i = SymEncryptKdisclose

i
(Pdisclose

i) and Kdisclose
i = PRFdk

aold
vk,i

(i, hSig)

where Pdisclose
i = 256 bit Kshared 64 bit vold

i .

Cshared integrity Cshared = SymEncryptKshared (Pshared)

where Pshared = 256 bit Kenc
1

... 256 bit Kenc
Nnew

256 bit pknew
enc,1 ... 256 bit pknew

enc,Nnew

256 bit esk

Note: pknew
enc,1..Nnew , esk, and memo1..Nnew are intentionally not constrained. This implies that for the Cenc and

Cshared integrity constraints, the circuit need not compute ChaCha20 blocks that are only used to encrypt those fields
(although the Poly1305 authenticator must be computed over the whole of each ciphertext).

9

6 In-band secret distribution

In order to transmit the secret v, ρ, and r (necessary for the recipient to later spend) and also a memo field to
the recipient without requiring an out-of-band communication channel, the transmission public key pkenc is used to
encrypt these secrets. The recipient’s possession of the associated (addrpk, addrsk) (which contains both apk and skenc)
is used to reconstruct the original coin and memo field.

Several more encryptions are used to also reveal these values to a holder of a viewing key for any of the input coins,
and also to permit them to check whether the other encryptions are valid.

All of the resulting ciphertexts are combined to form a transmitted coins ciphertext.

6.1 Encryption

Let SymEncryptK(P) be the AEAD CHACHA20 POLY1305 [7] encryption of plaintext P with empty “associated data”,
all-zero nonce, and key K.

Similarly, let SymDecryptK(C) be the AEAD CHACHA20 POLY1305 decryption of ciphertext C with empty “associ-
ated data”, all-zero nonce, and key K. The result is either the plaintext byte sequence, or ⊥ indicating failure to
decrypt.

Define:

KDF(dhsecreti, epk, pknew
enc,i, i) := SHA256

(
256 bit dhsecreti 256 bit epk 256 bit pknew

enc,i 8 bit i− 1
)

.

Let pknew
enc,1..Nnew be the Curve25519 public keys for the intended recipient addresses of each new coin, let aold

vk,1..Nold be
the disclosure key for each of the addresses from which the old coins are sent, and let cp1..Nnew be the coin plaintexts.

Then to encrypt:

• Generate a new Curve25519 (public, private) key pair (epk, esk), and a new AEAD CHACHA20 POLY1305 key
Kshared.

• For i in {1..Nnew},

– Let Penc
i be the raw encoding of cpi.

– Let dhsecreti := Curve25519(esk, pknew
enc,i).

– Let Kenc
i := KDF(dhsecreti, epk, pknew

enc,i, i).
– Let Cenc

i := SymEncryptKenc
i

(Penc
i).

• For i in {1..Nold},

– Let Pdisclose
i := 256 bit Kshared 64 bit vold

i .

– Let Kdisclose
i := PRFdk

aold
vk,i

(i, hSig).

– Let Cdisclose
i := SymEncryptKdisclose

i
(Pdisclose

i).

• Let Pshared := 256 bit Kenc
1

... 256 bit Kenc
Nnew

256 bit pknew
enc,1 ... 256 bit pknew

enc,Nnew

256 bit esk

• Let Cshared := SymEncryptKshared (Pshared).

The resulting transmitted coins ciphertext is (epk,Cenc
1..Nnew ,Cdisclose

1..Nold ,Cshared).

10

6.2 Decryption by a Recipient

Let (pkenc, skenc) be the recipient’s Curve25519 (public, private) key pair, and let cmnew
1..Nnew be the coin commitments

of each output coin. Then for each i in {1..Nnew}, the recipient will attempt to decrypt that ciphertext component
as follows:

• Let dhsecreti := Curve25519(skenc, epk).

• Let Kenc
i := KDF(dhsecreti, epk, pknew

enc,i, i).

• Return DecryptCoin(Kenc
i ,Cenc

i , cmnew
i).

DecryptCoin(Kenc
i ,Cenc

i , cmnew
i) is defined as follows:

• Let Penc
i := SymDecryptKenc

i
(Cenc

i).

• If Penc
i = ⊥, return ⊥.

• Extract cpi = (anew
pk,i, vnew

i , ρnew
i , rnew

i ,memoi) from Penc
i .

• If CoinCommitment((anew
pk,i, vnew

i , ρnew
i , rnew

i)) , cmnew
i , return ⊥, else return cpi.

Note that this corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown in Figure 2 of
[2].

To test whether a coin is unspent in a particular blockchain view also requires the authorization private key ask; the
coin is unspent if and only if sn = PRFsn

ask (ρ) is not in the spent serial number set for that blockchain view.

Note that a coin may change from being unspent to spent on a given blockchain view, as transactions are added to
that view. Also, blockchain reorganisations may cause the transaction in which a coin was output to no longer be
on the consensus blockchain.

6.3 Decryption by a Viewing Key Holder

A viewing key holder also acts as a recipient using its skenc key component. How to decrypt transactions using this
key component is described in the preceding section. The following applies to decryption using the avk component
of the viewing key.

Let avk be a viewing key holder’s disclosure key. Then for each Pour description in its blockchain view, the viewing
key holder will attempt to decrypt the corresponding transmitted coins ciphertext as follows:

1. For i in {1..Nold},

• Let Kdisclose
i := PRFdk

avk (i, hSig).

• Let Pdisclose
i := SymDecryptKdisclose

i
(Cdisclose

i).

• If Pdisclose
i = ⊥ then set Pshared

i := ⊥ and vold
i := ⊥, and continue with the next i.

• Extract Kshared
i and vold

i from Pdisclose
i .

• Let Pshared
i := SymDecryptKshared

i
(Cshared).

2. If Pshared
i = ⊥ for all i in {1..Nold}, then set cpi = ⊥ for i in {1..Nnew} and return (vold

1..Nold , cp1..Nnew).

3. Otherwise, let Pshared be the first non-⊥ value in Pshared
1..Nold .

4. Extract Kenc
1..Nnew , pknew

enc,1..Nnew , and esk from Pshared.

11

5. For i in {1..Nnew},

• Let cpi := DecryptCoin(Kenc
i ,Cenc

i , cmnew
i).

• Let epk∗ := Curve25519(esk, 9).
• Let dhsecreti := Curve25519(esk, pknew

enc,i).
• Let K∗i := KDF(dhsecreti, epk, pknew

enc,i, i).
• If cpi , ⊥ and either (K∗i , Kenc

i or epk∗ , epk), then set the memo field of cpi to be ⊥ (indicating that,
although this is a valid coin, the recipient would not have been able to decrypt it, and that the memo
field cannot be verified).

6. Return (vold
1..Nold , cp1..Nnew).

Note: The above algorithm is not constant-time. An equivalent but constant-time algorithm should be used
whenever it is desirable to avoid leakage of which ciphertext components were decryptable.

If a party holds more than one viewing key, it may optimize the above procedure by performing the loop in step
1 for the avk of each viewing key. It may be assumed that the first Pshared

i that decrypts correctly is the one that
should be used in step 3 onward. (However, additional information is provided by which viewing key was able to
decrypt each Cdisclose

i .)

The public key encryption used in this part of the protocol is based loosely on other encryption schemes based on
Diffie-Hellman over an elliptic curve, such as ECIES or the crypto box seal algorithm defined in libsodium [6]. Note
that:

• The same ephemeral key is used for all encryptions to the recipient keys in a given Pour description.

• In addition to the Diffie-Hellman secret, the KDF takes as input the public keys of both parties, and the index
i.

• The nonce parameter to AEAD CHACHA20 POLY1305 is not used.

• The ephemeral secret esk is included together with the transmission public keys of the recipients, symmetrically
encrypted to the disclosure key. This allows a viewing key holder to check whether the indicated recipients
would be able to decrypt a given component, and if so to decrypt the memo field. (We do not rely on this
to ensure that a viewing key holder can decrypt the other components of the output coins; instead, those
are symmetrically encrypted to the viewing key and the correctness of this encryption is checked by the POUR
circuit.)

7 Encoding Addresses, Keys, and Coin plaintexts

This section describes how Zcash encodes payment addresses, spending keys, viewing keys, coin plaintexts, and
Pour descriptions.

Addresses, keys, and coins, can be encoded as a byte string; this is called the raw encoding. This byte string can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[1].

SHA-256 compression function outputs are always represented as strings of 32 bytes.

The language consisting of the following encoding possibilities is prefix-free.

7.1 Transparent Payment Addresses

These are encoded in the same way as in Bitcoin [1].

12

7.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [1].

7.3 Private Payment Addresses

A payment address consists of apk and pkenc. apk is a SHA-256 compression function output. pkenc is a Curve25519
public key, for use with the encryption scheme defined in section “In-band secret distribution”.

The raw encoding of a payment address consists of:

0x?? 256 bit apk 256 bit pkenc

• A byte, 0x92, indicating this version of the raw encoding of a Zcash public address.

• 256 bits specifying apk.

• 256 bits specifying pkenc, using the normal encoding of a Curve25519 public key [3].

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces ‘z’ as the Base58Check leading character.

Nathan: what about the network version byte?

7.4 Spending Keys

A spending key consists of ask.

The raw encoding of a spending key consists of, in order:

0x?? 04 252 bit ask

• A byte 0x?? indicating this version of the raw encoding of a Zcash spending key.

• 4 zero padding bits.

• 252 bits specifying ask.

Note that, consistent with big-endian encoding, the zero padding occupies the high-order 4 bits of the second byte.

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces a suitable Base58Check leading character.

Nathan: what about the network version byte?

7.5 Viewing Keys

A viewing key consists of a disclosure key avk, and a transmission private key skenc.

The raw encoding of a viewing key consists of, in order:

0x?? 04 252 bit avk 256 bit skenc

13

• A byte 0x?? indicating this version of the raw encoding of a Zcash viewing key.

• 4 zero padding bits.

• 252 bits specifying avk.

• 256 bits specifying skenc.

Note that, consistent with big-endian encoding, the zero padding occupies the high-order 4 bits of the second byte.

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces a suitable Base58Check leading character.

Nathan: what about the network version byte?

7.6 Coin Plaintexts

The raw encoding of a coin plaintext (apk, v, ρ, r,memo) consists of, in order:

0x00 apk (32 bytes) v (8 bytes) ρ (32 bytes) r (32 bytes) memo (64 bytes)

• A byte 0x00 indicating this version of the raw encoding of a coin plaintext.

• 32 bytes specifying apk.

• 8 bytes specifying a big-endian encoding of v.

• 32 bytes specifying ρ.

• 32 bytes specifying r.

• 64 bytes specifying memo.

8 Differences from the Zerocash paper

8.1 Unification of Mints and Pours

TODO:

8.2 Faerie Gold attack and fix

TODO:

(The name “Faerie Gold” refers to various Celtic legends in which faeries pay mortals in what appears to be gold,
but which soon after reveals itself to be leaves, gorse blossoms, gingerbread cakes, or other less valuable things [5].)

8.3 Internal hash collision attack and fix

The Zerocash security proof requires that the composition of COMMr and COMMs is a computationally binding
commitment to its inputs apk, v, and ρ. However, the instantiation of COMMr and COMMs in section 5.1 of the
paper did not meet the definition of a binding commitment at a 128-bit security level. Specifically, the internal hash
of apk and ρ is truncated to 128 bits (motivated by providing statistical hiding security). This allows an attacker,

14

with a work factor on the order of 264, to find distinct values of ρ with colliding outputs of the truncated hash, and
therefore the same coin commitment. This would have allowed such an attacker to break the balance property by
double-spending coins, potentially creating arbitrary amounts of currency for themself.

Zcash uses a simpler construction with a single SHA256 evaluation for the commitment. The motivation for the
nested construction in Zerocash was to allow Mint transactions to be publically verified without requiring a ZK
proof (as described under step 3 in section 1.3 of [2]). Since Zcash combines “Mint” and “Pour” transactions into
a generalized Pour which always uses a ZK proof, it does not require the nesting. A side benefit is that this reduces
the number of SHA256Compress evaluations needed to compute each coin commitment from three to two, saving a
total of four SHA256Compress evaluations in the POUR circuit.

Note that Zcash coin commitments are not statistically hiding, and so Zcash does not support the “everlasting
anonymity” property described in section 8.1 of the Zerocash paper [2], even when used as described in that
section. While it is possible to define a statistically hiding, computationally binding commitment scheme for this use
at a 128-bit security level, the overhead of doing so within the circuit was not considered to justify the benefits.

8.4 Viewing keys

TODO:

8.5 Changes to PRF inputs and truncation

TODO:

8.6 In-band secret distribution

TODO:

8.7 Miscellaneous

• The paper defines a coin as a tuple (apk, v, ρ, r, s, cm), whereas this specification defines it as (apk, v, ρ, r). This
is just a clarification, because the instantiation of COMMs in section 5.1 of the paper did not use s (and neither
does the new instantiation of CoinCommitment). cm can be computed from the other fields.

9 Acknowledgements

The inventors of Zerocash are Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza.

The authors would like to thank everyone with whom they have discussed the Zerocash protocol design; in addition
to the inventors, this includes Mike Perry, Isis Lovecruft, Leif Ryge, Andrew Miller, Zooko Wilcox, Nathan Wilcox,
Samantha Hulsey, and no doubt others.

Mike Perry, Zooko Wilcox, and Nathan Wilcox contributed to the design of selective transparency features, now
called viewing keys.

The Faerie Gold attack was found by Zooko Wilcox. The internal hash collision attack was found by Taylor Hornby.

10 References

[1] Base58Check encoding. https://en.bitcoin.it/wiki/Base58Check_encoding. Accessed: 2016-01-26.

15

[2] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland) 2014, pages 459–474. IEEE, 2014.

[3] Daniel Bernstein. Curve25519: new Diffie-Hellman speed records. In Public Key Cryptography - PKC 2006. Pro-
ceedings of the 9th International Conference on Theory and Practice in Public-Key Cryptography, New York, NY,
USA, April 24-26. Springer-Verlag, 2006. Document ID: 4230efdfa673480fc079449d90f322c0. Date: 2006-02-09.
http://cr.yp.to/papers.html#curve25519.

[4] The Unicode Consortium. The Unicode Standard. The Unicode Consortium, 2015. http://www.unicode.org/
versions/latest/.

[5] Eddie Lenihan and Carolyn Eve Green. Meeting the Other Crowd: The Fairy Stories of Hidden Ireland. 2004.
Pages 109–110. ISBN: 1-58542-206-1.

[6] libsodium documentation: Sealed boxes. https://download.libsodium.org/doc/public-key_cryptography/
sealed_boxes.html. Accessed: 2016-02-01.

[7] Yoav Nir and Adam Langley. Request for Comments 7539: ChaCha20 and Poly1305 for IETF Protocols. Internet
Research Task Force (IRTF). https://tools.ietf.org/html/rfc7539. As modified by verified errata at https:
//www.rfc-editor.org/errata_search.php?rfc=7539.

[8] NIST. FIPS 180-4: Secure Hash Standard (SHS). http://csrc.nist.gov/publications/PubsFIPS.html#
180-4, August 2015. DOI: 10.6028/NIST.FIPS.180-4.

16

