
Zcash Protocol Specification

Sean Bowe — Daira Hopwood — Taylor Hornby

February 2, 2016

1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [2] with some adjustments
to terminology, functionality and performance. It bridges the existing transparent payment scheme used by Bitcoin
with a confidential payment scheme protected by zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARKs).

2 Concepts

2.1 Integers, Bit Sequences, and Endianness

All integers visible in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded as big-endian.

In bit layout diagrams, each box of the diagram represents a sequence of bits. If the content of the box is a
byte sequence, it is implicitly converted to a sequence of bits using big endian order. The bit sequences are then
concatenated in the order shown from left to right, and the result is converted to a sequence of bytes, again using
big-endian order.

Nathan: An example would help here. It would be illustrative if it had a few differently-sized fields.

Leadingk (x), where k is an integer and x is a bit sequence, returns the leading (initial) k bits of its input.

Trailingk (x), where k is an integer and x is a bit sequence, returns the trailing (final) k bits of its input.

2.2 Cryptographic Functions

CRH is a collision-resistant hash function. In Zcash, the SHA-256 compression function is used which takes a 512-
bit block and produces a 256-bit hash. This is different from the SHA-256 function, which hashes arbitrary-length
strings. [7]

PRFx is a pseudo-random function seeded by x. Three independent PRFx are needed in our scheme: PRFaddr
x , PRFsn

x ,
and PRFpk

x . It is required that PRFsn
x be collision-resistant across all x — i.e. it should not be feasible to find

(x, y) , (x′, y′) such that PRFsn
x (y) = PRFsn

x′ (y′).

In Zcash, the SHA-256 compression function is used to construct all three of these functions. The bits 00, 01 and
10 are included (respectively) within the blocks that are hashed, ensuring that the functions are independent.

Nathan: Note: If we change input arity (i.e. Nold), we need to be aware of how it is associated with this bit-packing.

1



apk := PRFaddr
ask (0) = CRH

(
256 bit ask 0 0 0254

)
sn := PRFsn

ask (ρ) = CRH
(

256 bit ask 0 1 Trailing254(ρ)
)

hi := PRFpk
ask (i, hSig) = CRH

(
256 bit ask 1 0 i Trailing253(hSig)

)
Daira: Should we instead define ρ to be 254 bits and hSig to be 253 bits?

2.3 Confidential Addresses and Private Keys

Nathan: This term, confidential address, may be confusing by comparison to a “private key”. In the latter case the
adjective is reminding a user of their responsibility to protect its privacy, but in the case of confidential address we want
users to know “transfers to this address are confidential, but the address itself *may* be published or kept confidential
depending on your needs. Two different people can compare addresses to know they have the same confidential address.”

A key pair (addrpk, addrsk) is generated by users who wish to receive coins under this scheme. The tuple parts embody
two distinct keypairs used for different purposes called the spend authority and the key-private encryption keypair.
The confidential address addrpk is a tuple (apk, pkenc), containing the public components of the spend authority and
key-private encryption respectively. The addrsk is a tuple (ask, skenc), containing the secret components respectively.

Nathan: A diagram could really help here.

Users can accept payment from multiple parties with a single addrpk and the fact that these payments are destined
to the same payee is not revealed on the blockchain, even to the paying parties. However if two parties collude to
compare a addrpk they can trivially determine they are the same. In the case that a payee wishes to prevent this
they should create a distinct confidential address for each payer.

2.4 Coins

A coin (denoted c) is a tuple (apk, v, ρ, r) which represents that a value v is spendable by the recipient who holds the
spend authority key pair (apk, ask) such that apk = PRFaddr

ask (0). ρ and r are tokens randomly generated by the sender.
Only a hash of these values is disclosed publicly, which allows these random tokens to blind the value and recipient
except to those who possess these tokens.

2.4.1 In-band secret distribution

In order to transmit the secret v, ρ, and r (necessary for the recipient to later spend) and also a memo field to the
recipient without requiring an out-of-band communication channel, the key-private encryption public key pkenc is
used to encrypt these secrets to form a transmitted coins ciphertext. The recipient’s possession of the associated
(addrpk, addrsk) (which contains both apk and skenc) is used to reconstruct the original coin and memo field.

The encryption algorithm is defined in terms of crypto box (i.e. crypto box curve25519xsalsa20poly1305) [3] as follows.

Let pkenc,1..Nnew be the Curve25519 public keys for the intended recipient addresses of each new coin, and let P1..Nnew

be their coin plaintexts.

Define:

nonce(i, pkeph, pkenc,i) = SHA256
(

1 byte i− 1 32 byte pkeph 32 byte pkenc,i

)
.

Then to encrypt:

• Generate a new Curve25519 (public, private) key pair (pkeph, skeph).

2



• For i in {1..Nnew}, let Ci = crypto box(Pi, pkenc,i, skeph, nonce(i, pkeph, pkenc,i)).

• Let Encryptpkenc,1..Nnew (P1..Nnew ) = (pkeph,C1..Nnew ).

Let (pkenc, skenc) be the recipient’s Curve25519 (public, private) key pair, and let (pkeph,C1..Nnew ) be the transmitted
coins ciphertext.

Then for each i in {1..Nnew}, the recipient will attempt to decrypt that ciphertext component as follows:

• Decryptskenc (i, pkeph,Ci) = crypto box open(Ci, pkeph, skenc, nonce(i, pkeph, pkenc))

Any ciphertext components that fail to decrypt with a given recipient’s private key will be ignored.

This is a variation on the crypto box seal algorithm defined in libsodium [6], but with a single ephemeral key used
for all encryptions in a given Pour description, and with the nonce for each ciphertext component depending on the
index i. Also, SHA256 (the full hash, not the compression function) is used instead of blake2b.

2.4.2 Coin Commitments

The underlying v and apk are blinded with ρ and r using the collision-resistant hash function CRH in a multi-layered
process. The resulting hash cm = CoinCommitment(c).

InternalH := CRH
(

256 bit apk 256 bit ρ
)

k := CRH
(

384 bit r Leading128(InternalH)
)

cm := CRH
(

64 bit v 192 bit padding 256 bit k
)

2.4.3 Serial numbers

A serial number (denoted sn) equals PRFsn
ask (ρ). A coin is spent by proving knowledge of ρ and ask in zero knowledge

while disclosing sn, allowing sn to be used to prevent double-spending.

2.5 Coin Commitment Tree

bm1

?

rt

bm2 bm3 bm4 bm5 ?

The coin commitment tree is an incremental merkle tree of depth d used to store coin commitments that Pour
transfers produce. Just as the unspent transaction output set (UTXO) used in Bitcoin, it is used to express the

3



existence of value and the capability to spend it. However, unlike the UTXO, it is not the job of this tree to protect
against double-spending, as it is append-only.

Blocks in the blockchain are associated (by all nodes) with the root of this tree after all of its constituent Pour
descriptions’ coin commitments have been entered into the tree associated with the previous block.

2.6 Spent Serials Map

Transactions insert serial numbers into a spent serial numbers map which is maintained alongside the UTXO by all
nodes.

Eli: a tx is just a string, so it doesn’t insert anything. Rather, nodes process tx’s and the “good” ones lead to the addition
of serials to the spent serials map.

Transactions that attempt to insert a serial number into this map that already exists within it are invalid as they
are attempting to double-spend.

Eli: After defining transaction, one should define what a legal tx is (this definition depends on a particular blockchain
[view]) and only then can one talk about “attempts” of transactions, and insertions of serial numbers into the spent serials
map.

2.7 The Blockchain

At a given point in time, the blockchain view of each full node consists of a sequence of one or more valid blocks.
Each block consists of a sequence of one or more transactions. In a given node’s blockchain view, treestates are
chained in an obvious way:

• The input treestate of the first block is the empty treestate.

• The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.

• The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

• The final treestate of a block is the output treestate of its last transaction.

An anchor is a Merkle tree root of a treestate, and uniquely identifies that treestate given the assumed security
properties of the Merkle tree’s hash function.

Each transaction is associated with a sequence of Pour descriptions. TODO They also have a transparent value flow
that interacts with the Pour vold

pub and vnew
pub . Inputs and outputs are associated with a value.

The total value of the outputs must not exceed the total value of the inputs.

The anchor of the first Pour description in a transaction must refer to some earlier block’s final treestate.

The anchor of each subsequent Pour description may refer either to some earlier block’s final treestate, or to the
output treestate of the immediately preceding Pour description.

These conditions act as constraints on the blocks that a full node will accept into its blockchain view.

We rely on Bitcoin-style consensus for full nodes to eventually converge on their views of valid blocks, and therefore
of the sequence of treestates in those blocks.

Value pool Transaction inputs insert value into a value pool, and transaction outputs remove value from this pool.
The remaining value in the pool is available to miners as a fee.

4



3 Pour Transfers and Descriptions

A Pour description is data included in a block that describes a Pour transfer, i.e. a confidential value transfer. This
kind of value transfer is the primary Zerocash-specific operation performed by transactions; it uses, but should not
be confused with, the POUR circuit used for the zk-SNARK proof and verification.

A Pour transfer spends Nold coins cold
1..Nold and creates Nnew coins cnew

1..Nnew . Zcash transactions have an additional
field vpour, which is a sequence of Pour descriptions.

Each Pour description consists of:

vpub old which is a value vold
pub that the Pour transfer removes from the value pool.

vpub new which is a value vnew
pub that the Pour transfer inserts into the value pool.

anchor which is a merkle root rt of the coin commitment tree at some block height in the past, or the merkle
root produced by a previous pour in this transaction. Sean: We need to be more specific here.

scriptSig which is a script that creates conditions for acceptance of a Pour description in a transaction. The
SHA256Compress hash of this value is hSig.
Daira: Why SHA256Compress and not SHA-256? The script is variable-length.

scriptPubKey which is a script used to satisfy the conditions of the scriptSig.

serials which is an Nold size sequence of serials snold
1..Nold .

commitments which is a Nnew size sequence of coin commitments cmnew
1..Nnew .

ephemeralKey which is a Curve25519 public key pkeph.

ciphertexts which is a Nnew size sequence of ciphertext components. (ephemeralKey and ciphertexts
together form the transmitted coins ciphertext.)

vmacs which is a Nold size sequence of message authentication tags h1..Nold that bind hSig to each ask of the
Pour description.

zkproof which is the zero-knowledge proof πPOUR.

Merkle root validity A Pour description is valid if rt is a Coin commitment tree root found in either the blockchain
or a merkle root produced by inserting the Coin commitments of a previous Pour description in the transaction to
the Coin commitment tree identified by that previous Pour description’s anchor.

Non-malleability A Pour description is valid if the script formed by appending scriptPubKey to scriptSig
returns true. The scriptSig is cryptographically bound to πPOUR.

Balance A Pour transfer can be seen, from the perspective of the transaction, as an input and an output simulta-
neously. vold

pub takes value from the value pool and vnew
pub adds value to the value pool. As a result, vold

pub is treated like
an output value, whereas vnew

pub is treated like an input value.

Commitments and Serials A transaction that contains one or more Pour descriptions, when entered into the
blockchain, appends to the coin commitment tree with all constituent coin commitments. All of the constituent serial
numbers are also entered into the spent serial numbers map of the blockchain view and mempool. A transaction is
not valid if it attempts to add a serial number to the spent serial numbers map that already exists in the map.

5



3.1 Pour Circuit and Proofs

In Zcash, Nold and Nnew are both 2.

A valid instance of πPOUR assures that given a primary input (rt, snold
1..Nold , cmnew

1..Nnew , vold
pub, vnew

pub , hSig, h1..Nold ), a witness
of auxiliary input (path1..Nold , cold

1..Nold , aold
sk,1..Nold , cnew

1..Nnew ) exists, where:

for each i ∈ {1..Nold}: cold
i = (aold

pk,i, vold
i , ρold

i , rold
i )

for each i ∈ {1..Nnew}: cnew
i = (anew

pk,i, vnew
i , ρnew

i , rnew
i )

The following conditions hold:

Merkle path validity for each i ∈ {1..Nold} | vold
i , 0: pathi must be a valid path of depth d from

CoinCommitment(cold
i ) to Coin commitment merkle tree root rt.

Balance vold
pub +

Nold∑
i=1

vold
i = vnew

pub +
Nnew∑
i=1

vnew
i .

Serial integrity for each i ∈ {1..Nnew}: snold
i = PRFsn

aold
sk,i

(ρold
i ).

Spend authority for each i ∈ {1..Nold}: aold
pk,i = PRFaddr

aold
sk,i

(0).

Non-malleability for each i ∈ {1..Nold}: hi = PRFpk
aold

sk,i

(i, hSig)

Commitment integrity for each i ∈ {1..Nnew}: cmnew
i = CoinCommitment(cnew

i )

4 Encoding Addresses, Private keys, Coins, and Pour descriptions

This section describes how Zcash encodes public addresses, private keys, coins, and Pour descriptions.

Addresses, keys, and coins, can be encoded as a byte string; this is called the raw encoding. This byte string can
then be further encoded using Base58Check. The Base58Check layer is the same as for upstream Bitcoin addresses
[1].

SHA-256 compression function outputs are always represented as strings of 32 bytes.

The language consisting of the following encoding possibilities is prefix-free.

4.1 Transparent Public Addresses

These are encoded in the same way as in Bitcoin [1].

4.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [1].

6



4.3 Confidential Public Addresses

A confidential address consists of apk and pkenc. apk is a SHA-256 compression function output. pkenc is a Curve25519
public key, for use with the encryption scheme defined in section “In-band secret distribution”.

4.3.1 Raw Encoding

The raw encoding of a confidential address consists of:

0x92 apk (32 bytes) A 33-byte encoding of pkenc

• A byte, 0x92, indicating this version of the raw encoding of a Zcash public address.

• 32 bytes specifying apk.

• 32 bytes specifying pkenc, using the normal encoding of a Curve25519 public key [4].

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces ‘z’ as the Base58Check leading character.

Nathan: what about the network version byte?

4.4 Confidential Address Secrets

A confidential address secret consists of ask and skenc. ask is a SHA-256 compression function output. skenc is a
Curve25519 private key, for use with the encryption scheme defined in section “In-band secret distribution”.

4.4.1 Raw Encoding

The raw encoding of a confidential address secret consists of, in order:

0x93 ask (32 bytes) skenc (32 bytes)

• A byte 0x93 indicating this version of the raw encoding of a Zcash private key.

• 32 bytes specifying ask.

• 32 bytes specifying skenc.

Daira: check that this lead byte is distinct from other Bitcoin stuff, and produces ‘z’ as the Base58Check leading character.

Nathan: what about the network version byte?

4.5 Coins

Transmitted coins are stored on the blockchain in encrypted form, together with a coin commitment cm.

The coin plaintexts associated with a Pour description are encrypted to the respective key-private encryption keys
pkenc,1..Nnew , and the result forms a transmitted coins ciphertext.

Each coin plaintext consists of (v, ρ, r,memo), where:

• v is a 64-bit unsigned integer representing the value of the coin in zatoshi (1 ZEC = 108 zatoshi).

7



• ρ is a 32-byte PRFsn
ask preimage.

• r is a 48-byte COMM trapdoor.

• memo is a 64-byte memo field associated with this coin.

The usage of the memo field is by agreement between the sender and recipient of the coin. It should be encoded as
a UTF-8 human-readable string [5], padded with zero bytes. Wallet software is expected to strip any trailing zero
bytes and then display the resulting UTF-8 string to the recipient user, where applicable. Incorrect UTF-8-encoded
byte sequences should be displayed as replacement characters (U+FFFD). This does not preclude uses of the memo
field by automated software, but specification of such usage is not in the scope of this document.

Note that the value s described as being part of a coin in the Zerocash paper is not encoded because the instantiation
of COMMs does not use it.

4.6 Raw Encoding

The raw encoding of a coin plaintext consists of, in order:

0x00 v (8 bytes) ρ (32 bytes) r (48 bytes) memo (64 bytes)

• A byte 0x00 indicating this version of the raw encoding of a coin plaintext.

• 8 bytes specifying a big-endian encoding of v.

• 32 bytes specifying ρ.

• 48 bytes specifying r.

• 64 bytes specifying memo.

5 Pours (within a transaction on the blockchain)

TBD.

6 Transactions

TBD.

7 Differences from the Zerocash paper

• Instead of ECIES, we use an encryption scheme based on crypto box, defined in section “In-band secret distri-
bution”.

• Faerie Gold fix (TBD).

• The paper defines a coin as a tuple (apk, v, ρ, r, s, cm), whereas this specification defines it as (apk, v, ρ, r). This
is just a clarification, because the instantiation of COMMs in section 5.1 of the paper does not use s, and cm
can be computed from the other fields.

8



8 References

[1] Base58Check encoding. https://en.bitcoin.it/wiki/Base58Check_encoding. Accessed: 2016-01-26.

[2] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars
Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland) 2014, pages 459–474. IEEE, 2014.

[3] Daniel Bernstein. Cryptography in NaCl. https://nacl.cr.yp.to/valid.html. Accessed: 2016-02-01.

[4] Daniel Bernstein. Curve25519: new Diffie-Hellman speed records. In Public Key Cryptography - PKC 2006. Pro-
ceedings of the 9th International Conference on Theory and Practice in Public-Key Cryptography, New York, NY,
USA, April 24-26. Springer-Verlag, 2006. Document ID: 4230efdfa673480fc079449d90f322c0. Date: 2006-02-09.
http://cr.yp.to/papers.html#curve25519.

[5] The Unicode Consortium. The Unicode Standard. The Unicode Consortium, 2015. http://www.unicode.org/
versions/latest/.

[6] libsodium documentation: Sealed boxes. https://download.libsodium.org/doc/public-key_cryptography/
sealed_boxes.html. Accessed: 2016-02-01.

[7] NIST. FIPS 180-4: Secure Hash Standard (SHS). http://csrc.nist.gov/publications/PubsFIPS.html#
180-4, August 2015. DOI: 10.6028/NIST.FIPS.180-4.

9


