Browse Source

Implement note locking for z_mergetoaddress

Co-authored-by: Eirik Ogilvie-Wigley <eirik@z.cash>
z_validateviewingkey
Brad Miller 6 years ago
committed by Jonathan "Duke" Leto
parent
commit
6d3cd3a2f9
  1. 366
      qa/rpc-tests/wallet_mergetoaddress.py
  2. 947
      src/wallet/asyncrpcoperation_mergetoaddress.cpp
  3. 193
      src/wallet/asyncrpcoperation_mergetoaddress.h
  4. 33
      src/wallet/gtest/test_wallet.cpp
  5. 41
      src/wallet/wallet.cpp
  6. 9
      src/wallet/wallet.h

366
qa/rpc-tests/wallet_mergetoaddress.py

@ -0,0 +1,366 @@
#!/usr/bin/env python2
# Copyright (c) 2017 The Zcash developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
from test_framework.test_framework import BitcoinTestFramework
from test_framework.authproxy import JSONRPCException
from test_framework.util import assert_equal, initialize_chain_clean, \
start_node, connect_nodes_bi, sync_blocks, sync_mempools, \
wait_and_assert_operationid_status
from decimal import Decimal
class WalletMergeToAddressTest (BitcoinTestFramework):
def setup_chain(self):
print("Initializing test directory "+self.options.tmpdir)
initialize_chain_clean(self.options.tmpdir, 4)
def setup_network(self, split=False):
args = ['-debug=zrpcunsafe', '-experimentalfeatures', '-zmergetoaddress']
self.nodes = []
self.nodes.append(start_node(0, self.options.tmpdir, args))
self.nodes.append(start_node(1, self.options.tmpdir, args))
args2 = ['-debug=zrpcunsafe', '-experimentalfeatures', '-zmergetoaddress', '-mempooltxinputlimit=7']
self.nodes.append(start_node(2, self.options.tmpdir, args2))
connect_nodes_bi(self.nodes,0,1)
connect_nodes_bi(self.nodes,1,2)
connect_nodes_bi(self.nodes,0,2)
self.is_network_split=False
self.sync_all()
def run_test (self):
print "Mining blocks..."
self.nodes[0].generate(1)
do_not_shield_taddr = self.nodes[0].getnewaddress()
self.nodes[0].generate(4)
walletinfo = self.nodes[0].getwalletinfo()
assert_equal(walletinfo['immature_balance'], 50)
assert_equal(walletinfo['balance'], 0)
self.sync_all()
self.nodes[2].generate(1)
self.nodes[2].getnewaddress()
self.nodes[2].generate(1)
self.nodes[2].getnewaddress()
self.nodes[2].generate(1)
self.sync_all()
self.nodes[1].generate(101)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), 50)
assert_equal(self.nodes[1].getbalance(), 10)
assert_equal(self.nodes[2].getbalance(), 30)
# Shield the coinbase
myzaddr = self.nodes[0].z_getnewaddress()
result = self.nodes[0].z_shieldcoinbase("*", myzaddr, 0)
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
# Prepare some UTXOs and notes for merging
mytaddr = self.nodes[0].getnewaddress()
mytaddr2 = self.nodes[0].getnewaddress()
mytaddr3 = self.nodes[0].getnewaddress()
result = self.nodes[0].z_sendmany(myzaddr, [
{'address': do_not_shield_taddr, 'amount': 10},
{'address': mytaddr, 'amount': 10},
{'address': mytaddr2, 'amount': 10},
{'address': mytaddr3, 'amount': 10},
], 1, 0)
wait_and_assert_operationid_status(self.nodes[0], result)
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
# Merging will fail because from arguments need to be in an array
try:
self.nodes[0].z_mergetoaddress("*", myzaddr)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("JSON value is not an array as expected" in errorString, True)
# Merging will fail when trying to spend from watch-only address
self.nodes[2].importaddress(mytaddr)
try:
self.nodes[2].z_mergetoaddress([mytaddr], myzaddr)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Could not find any funds to merge" in errorString, True)
# Merging will fail because fee is negative
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, -1)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Amount out of range" in errorString, True)
# Merging will fail because fee is larger than MAX_MONEY
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, Decimal('21000000.00000001'))
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Amount out of range" in errorString, True)
# Merging will fail because fee is larger than sum of UTXOs
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, 999)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Insufficient funds" in errorString, True)
# Merging will fail because transparent limit parameter must be at least 0
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, Decimal('0.001'), -1)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Limit on maximum number of UTXOs cannot be negative" in errorString, True)
# Merging will fail because transparent limit parameter is absurdly large
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, Decimal('0.001'), 99999999999999)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("JSON integer out of range" in errorString, True)
# Merging will fail because shielded limit parameter must be at least 0
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, Decimal('0.001'), 50, -1)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Limit on maximum number of notes cannot be negative" in errorString, True)
# Merging will fail because shielded limit parameter is absurdly large
try:
self.nodes[0].z_mergetoaddress(["*"], myzaddr, Decimal('0.001'), 50, 99999999999999)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("JSON integer out of range" in errorString, True)
# Merging will fail for this specific case where it would spend a fee and do nothing
try:
self.nodes[0].z_mergetoaddress([mytaddr], mytaddr)
assert(False)
except JSONRPCException,e:
errorString = e.error['message']
assert_equal("Destination address is also the only source address, and all its funds are already merged" in errorString, True)
# Merge UTXOs from node 0 of value 30, standard fee of 0.00010000
result = self.nodes[0].z_mergetoaddress([mytaddr, mytaddr2, mytaddr3], myzaddr)
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
# Confirm balances and that do_not_shield_taddr containing funds of 10 was left alone
assert_equal(self.nodes[0].getbalance(), 10)
assert_equal(self.nodes[0].z_getbalance(do_not_shield_taddr), Decimal('10.0'))
assert_equal(self.nodes[0].z_getbalance(myzaddr), Decimal('39.99990000'))
assert_equal(self.nodes[1].getbalance(), 40)
assert_equal(self.nodes[2].getbalance(), 30)
# Shield all notes to another z-addr
myzaddr2 = self.nodes[0].z_getnewaddress()
result = self.nodes[0].z_mergetoaddress(["ANY_ZADDR"], myzaddr2, 0)
assert_equal(result["mergingUTXOs"], Decimal('0'))
assert_equal(result["remainingUTXOs"], Decimal('0'))
assert_equal(result["mergingNotes"], Decimal('2'))
assert_equal(result["remainingNotes"], Decimal('0'))
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
self.sync_all()
blockhash = self.nodes[1].generate(1)
self.sync_all()
assert_equal(len(self.nodes[0].getblock(blockhash[0])['tx']), 2)
assert_equal(self.nodes[0].z_getbalance(myzaddr), 0)
assert_equal(self.nodes[0].z_getbalance(myzaddr2), Decimal('39.99990000'))
# Shield coinbase UTXOs from any node 2 taddr, and set fee to 0
result = self.nodes[2].z_shieldcoinbase("*", myzaddr, 0)
wait_and_assert_operationid_status(self.nodes[2], result['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), 10)
assert_equal(self.nodes[0].z_getbalance(myzaddr), Decimal('30'))
assert_equal(self.nodes[0].z_getbalance(myzaddr2), Decimal('39.99990000'))
assert_equal(self.nodes[1].getbalance(), 60)
assert_equal(self.nodes[2].getbalance(), 0)
# Merge all notes from node 0 into a node 0 taddr, and set fee to 0
result = self.nodes[0].z_mergetoaddress(["ANY_ZADDR"], mytaddr, 0)
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), Decimal('79.99990000'))
assert_equal(self.nodes[0].z_getbalance(do_not_shield_taddr), Decimal('10.0'))
assert_equal(self.nodes[0].z_getbalance(mytaddr), Decimal('69.99990000'))
assert_equal(self.nodes[0].z_getbalance(myzaddr), 0)
assert_equal(self.nodes[0].z_getbalance(myzaddr2), 0)
assert_equal(self.nodes[1].getbalance(), 70)
assert_equal(self.nodes[2].getbalance(), 0)
# Merge all node 0 UTXOs together into a node 1 taddr, and set fee to 0
self.nodes[1].getnewaddress() # Ensure we have an empty address
n1taddr = self.nodes[1].getnewaddress()
result = self.nodes[0].z_mergetoaddress(["ANY_TADDR"], n1taddr, 0)
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
assert_equal(self.nodes[0].getbalance(), 0)
assert_equal(self.nodes[0].z_getbalance(do_not_shield_taddr), 0)
assert_equal(self.nodes[0].z_getbalance(mytaddr), 0)
assert_equal(self.nodes[0].z_getbalance(myzaddr), 0)
assert_equal(self.nodes[1].getbalance(), Decimal('159.99990000'))
assert_equal(self.nodes[1].z_getbalance(n1taddr), Decimal('79.99990000'))
assert_equal(self.nodes[2].getbalance(), 0)
# Generate 800 regular UTXOs on node 0, and 20 regular UTXOs on node 2
mytaddr = self.nodes[0].getnewaddress()
n2taddr = self.nodes[2].getnewaddress()
self.nodes[1].generate(1000)
self.sync_all()
for i in range(800):
self.nodes[1].sendtoaddress(mytaddr, 1)
for i in range(20):
self.nodes[1].sendtoaddress(n2taddr, 1)
self.nodes[1].generate(1)
self.sync_all()
# Merging the 800 UTXOs will occur over two transactions, since max tx size is 100,000 bytes.
# We don't verify mergingTransparentValue as UTXOs are not selected in any specific order, so value can change on each test run.
# We set an unrealistically high limit parameter of 99999, to verify that max tx size will constrain the number of UTXOs.
result = self.nodes[0].z_mergetoaddress([mytaddr], myzaddr, 0, 99999)
assert_equal(result["mergingUTXOs"], Decimal('662'))
assert_equal(result["remainingUTXOs"], Decimal('138'))
assert_equal(result["mergingNotes"], Decimal('0'))
assert_equal(result["mergingShieldedValue"], Decimal('0'))
assert_equal(result["remainingNotes"], Decimal('0'))
assert_equal(result["remainingShieldedValue"], Decimal('0'))
remainingTransparentValue = result["remainingTransparentValue"]
opid1 = result['opid']
# Verify that UTXOs are locked (not available for selection) by queuing up another merging operation
result = self.nodes[0].z_mergetoaddress([mytaddr], myzaddr, 0, 0)
assert_equal(result["mergingUTXOs"], Decimal('138'))
assert_equal(result["mergingTransparentValue"], Decimal(remainingTransparentValue))
assert_equal(result["remainingUTXOs"], Decimal('0'))
assert_equal(result["remainingTransparentValue"], Decimal('0'))
assert_equal(result["mergingNotes"], Decimal('0'))
assert_equal(result["mergingShieldedValue"], Decimal('0'))
assert_equal(result["remainingNotes"], Decimal('0'))
assert_equal(result["remainingShieldedValue"], Decimal('0'))
opid2 = result['opid']
# wait for both aysnc operations to complete
wait_and_assert_operationid_status(self.nodes[0], opid1)
wait_and_assert_operationid_status(self.nodes[0], opid2)
# sync_all() invokes sync_mempool() but node 2's mempool limit will cause tx1 and tx2 to be rejected.
# So instead, we sync on blocks and mempool for node 0 and node 1, and after a new block is generated
# which mines tx1 and tx2, all nodes will have an empty mempool which can then be synced.
sync_blocks(self.nodes[:2])
sync_mempools(self.nodes[:2])
# Generate enough blocks to ensure all transactions are mined
while self.nodes[1].getmempoolinfo()['size'] > 0:
self.nodes[1].generate(1)
self.sync_all()
# Verify maximum number of UTXOs which node 2 can shield is limited by option -mempooltxinputlimit
# This option is used when the limit parameter is set to 0.
result = self.nodes[2].z_mergetoaddress([n2taddr], myzaddr, Decimal('0.0001'), 0)
assert_equal(result["mergingUTXOs"], Decimal('7'))
assert_equal(result["remainingUTXOs"], Decimal('13'))
assert_equal(result["mergingNotes"], Decimal('0'))
assert_equal(result["remainingNotes"], Decimal('0'))
wait_and_assert_operationid_status(self.nodes[2], result['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
# Verify maximum number of UTXOs which node 0 can shield is set by default limit parameter of 50
mytaddr = self.nodes[0].getnewaddress()
for i in range(100):
self.nodes[1].sendtoaddress(mytaddr, 1)
self.nodes[1].generate(1)
self.sync_all()
result = self.nodes[0].z_mergetoaddress([mytaddr], myzaddr, Decimal('0.0001'))
assert_equal(result["mergingUTXOs"], Decimal('50'))
assert_equal(result["remainingUTXOs"], Decimal('50'))
assert_equal(result["mergingNotes"], Decimal('0'))
# Remaining notes are only counted if we are trying to merge any notes
assert_equal(result["remainingNotes"], Decimal('0'))
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
# Verify maximum number of UTXOs which node 0 can shield can be set by the limit parameter
result = self.nodes[0].z_mergetoaddress([mytaddr], myzaddr, Decimal('0.0001'), 33)
assert_equal(result["mergingUTXOs"], Decimal('33'))
assert_equal(result["remainingUTXOs"], Decimal('17'))
assert_equal(result["mergingNotes"], Decimal('0'))
# Remaining notes are only counted if we are trying to merge any notes
assert_equal(result["remainingNotes"], Decimal('0'))
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
# Don't sync node 2 which rejects the tx due to its mempooltxinputlimit
sync_blocks(self.nodes[:2])
sync_mempools(self.nodes[:2])
self.nodes[1].generate(1)
self.sync_all()
# Verify maximum number of notes which node 0 can shield can be set by the limit parameter
# Also check that we can set off a second merge before the first one is complete
# myzaddr has 5 notes at this point
result1 = self.nodes[0].z_mergetoaddress([myzaddr], myzaddr, 0.0001, 50, 2)
result2 = self.nodes[0].z_mergetoaddress([myzaddr], myzaddr, 0.0001, 50, 2)
# First merge should select from all notes
assert_equal(result1["mergingUTXOs"], Decimal('0'))
# Remaining UTXOs are only counted if we are trying to merge any UTXOs
assert_equal(result1["remainingUTXOs"], Decimal('0'))
assert_equal(result1["mergingNotes"], Decimal('2'))
assert_equal(result1["remainingNotes"], Decimal('3'))
# Second merge should ignore locked notes
assert_equal(result2["mergingUTXOs"], Decimal('0'))
assert_equal(result2["remainingUTXOs"], Decimal('0'))
assert_equal(result2["mergingNotes"], Decimal('2'))
assert_equal(result2["remainingNotes"], Decimal('1'))
wait_and_assert_operationid_status(self.nodes[0], result1['opid'])
wait_and_assert_operationid_status(self.nodes[0], result2['opid'])
self.sync_all()
self.nodes[1].generate(1)
self.sync_all()
# Shield both UTXOs and notes to a z-addr
result = self.nodes[0].z_mergetoaddress(["*"], myzaddr, 0, 10, 2)
assert_equal(result["mergingUTXOs"], Decimal('10'))
assert_equal(result["remainingUTXOs"], Decimal('7'))
assert_equal(result["mergingNotes"], Decimal('2'))
assert_equal(result["remainingNotes"], Decimal('1'))
wait_and_assert_operationid_status(self.nodes[0], result['opid'])
# Don't sync node 2 which rejects the tx due to its mempooltxinputlimit
sync_blocks(self.nodes[:2])
sync_mempools(self.nodes[:2])
self.nodes[1].generate(1)
self.sync_all()
if __name__ == '__main__':
WalletMergeToAddressTest().main()

947
src/wallet/asyncrpcoperation_mergetoaddress.cpp

@ -0,0 +1,947 @@
// Copyright (c) 2017 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "asyncrpcoperation_mergetoaddress.h"
#include "amount.h"
#include "asyncrpcqueue.h"
#include "core_io.h"
#include "init.h"
#include "main.h"
#include "miner.h"
#include "net.h"
#include "netbase.h"
#include "rpcprotocol.h"
#include "rpcserver.h"
#include "script/interpreter.h"
#include "sodium.h"
#include "timedata.h"
#include "util.h"
#include "utilmoneystr.h"
#include "utiltime.h"
#include "wallet.h"
#include "walletdb.h"
#include "zcash/IncrementalMerkleTree.hpp"
#include <chrono>
#include <iostream>
#include <string>
#include <thread>
#include "paymentdisclosuredb.h"
using namespace libzcash;
int mta_find_output(UniValue obj, int n)
{
UniValue outputMapValue = find_value(obj, "outputmap");
if (!outputMapValue.isArray()) {
throw JSONRPCError(RPC_WALLET_ERROR, "Missing outputmap for JoinSplit operation");
}
UniValue outputMap = outputMapValue.get_array();
assert(outputMap.size() == ZC_NUM_JS_OUTPUTS);
for (size_t i = 0; i < outputMap.size(); i++) {
if (outputMap[i].get_int() == n) {
return i;
}
}
throw std::logic_error("n is not present in outputmap");
}
AsyncRPCOperation_mergetoaddress::AsyncRPCOperation_mergetoaddress(
CMutableTransaction contextualTx,
std::vector<MergeToAddressInputUTXO> utxoInputs,
std::vector<MergeToAddressInputNote> noteInputs,
MergeToAddressRecipient recipient,
CAmount fee,
UniValue contextInfo) :
tx_(contextualTx), utxoInputs_(utxoInputs), noteInputs_(noteInputs),
recipient_(recipient), fee_(fee), contextinfo_(contextInfo)
{
if (fee < 0 || fee > MAX_MONEY) {
throw JSONRPCError(RPC_INVALID_PARAMETER, "Fee is out of range");
}
if (utxoInputs.empty() && noteInputs.empty()) {
throw JSONRPCError(RPC_INVALID_PARAMETER, "No inputs");
}
if (std::get<0>(recipient).size() == 0) {
throw JSONRPCError(RPC_INVALID_PARAMETER, "Recipient parameter missing");
}
toTaddr_ = CBitcoinAddress(std::get<0>(recipient));
isToTaddr_ = toTaddr_.IsValid();
isToZaddr_ = false;
if (!isToTaddr_) {
CZCPaymentAddress address(std::get<0>(recipient));
try {
PaymentAddress addr = address.Get();
isToZaddr_ = true;
toPaymentAddress_ = addr;
} catch (const std::runtime_error& e) {
throw JSONRPCError(RPC_INVALID_ADDRESS_OR_KEY, string("runtime error: ") + e.what());
}
}
// Log the context info i.e. the call parameters to z_mergetoaddress
if (LogAcceptCategory("zrpcunsafe")) {
LogPrint("zrpcunsafe", "%s: z_mergetoaddress initialized (params=%s)\n", getId(), contextInfo.write());
} else {
LogPrint("zrpc", "%s: z_mergetoaddress initialized\n", getId());
}
// Lock UTXOs
lock_utxos();
lock_notes();
// Enable payment disclosure if requested
paymentDisclosureMode = fExperimentalMode && GetBoolArg("-paymentdisclosure", false);
}
AsyncRPCOperation_mergetoaddress::~AsyncRPCOperation_mergetoaddress()
{
}
void AsyncRPCOperation_mergetoaddress::main()
{
if (isCancelled()) {
unlock_utxos(); // clean up
unlock_notes();
return;
}
set_state(OperationStatus::EXECUTING);
start_execution_clock();
bool success = false;
#ifdef ENABLE_MINING
#ifdef ENABLE_WALLET
GenerateBitcoins(false, NULL, 0);
#else
GenerateBitcoins(false, 0);
#endif
#endif
try {
success = main_impl();
} catch (const UniValue& objError) {
int code = find_value(objError, "code").get_int();
std::string message = find_value(objError, "message").get_str();
set_error_code(code);
set_error_message(message);
} catch (const runtime_error& e) {
set_error_code(-1);
set_error_message("runtime error: " + string(e.what()));
} catch (const logic_error& e) {
set_error_code(-1);
set_error_message("logic error: " + string(e.what()));
} catch (const exception& e) {
set_error_code(-1);
set_error_message("general exception: " + string(e.what()));
} catch (...) {
set_error_code(-2);
set_error_message("unknown error");
}
#ifdef ENABLE_MINING
#ifdef ENABLE_WALLET
GenerateBitcoins(GetBoolArg("-gen", false), pwalletMain, GetArg("-genproclimit", 1));
#else
GenerateBitcoins(GetBoolArg("-gen", false), GetArg("-genproclimit", 1));
#endif
#endif
stop_execution_clock();
if (success) {
set_state(OperationStatus::SUCCESS);
} else {
set_state(OperationStatus::FAILED);
}
std::string s = strprintf("%s: z_mergetoaddress finished (status=%s", getId(), getStateAsString());
if (success) {
s += strprintf(", txid=%s)\n", tx_.GetHash().ToString());
} else {
s += strprintf(", error=%s)\n", getErrorMessage());
}
LogPrintf("%s", s);
unlock_utxos(); // clean up
unlock_notes(); // clean up
// !!! Payment disclosure START
if (success && paymentDisclosureMode && paymentDisclosureData_.size() > 0) {
uint256 txidhash = tx_.GetHash();
std::shared_ptr<PaymentDisclosureDB> db = PaymentDisclosureDB::sharedInstance();
for (PaymentDisclosureKeyInfo p : paymentDisclosureData_) {
p.first.hash = txidhash;
if (!db->Put(p.first, p.second)) {
LogPrint("paymentdisclosure", "%s: Payment Disclosure: Error writing entry to database for key %s\n", getId(), p.first.ToString());
} else {
LogPrint("paymentdisclosure", "%s: Payment Disclosure: Successfully added entry to database for key %s\n", getId(), p.first.ToString());
}
}
}
// !!! Payment disclosure END
}
// Notes:
// 1. #1359 Currently there is no limit set on the number of joinsplits, so size of tx could be invalid.
// 2. #1277 Spendable notes are not locked, so an operation running in parallel could also try to use them.
bool AsyncRPCOperation_mergetoaddress::main_impl()
{
assert(isToTaddr_ != isToZaddr_);
bool isPureTaddrOnlyTx = (noteInputs_.empty() && isToTaddr_);
CAmount minersFee = fee_;
size_t numInputs = utxoInputs_.size();
// Check mempooltxinputlimit to avoid creating a transaction which the local mempool rejects
size_t limit = (size_t)GetArg("-mempooltxinputlimit", 0);
if (limit > 0 && numInputs > limit) {
throw JSONRPCError(RPC_WALLET_ERROR,
strprintf("Number of transparent inputs %d is greater than mempooltxinputlimit of %d",
numInputs, limit));
}
CAmount t_inputs_total = 0;
for (MergeToAddressInputUTXO& t : utxoInputs_) {
t_inputs_total += std::get<1>(t);
}
CAmount z_inputs_total = 0;
for (MergeToAddressInputNote& t : noteInputs_) {
z_inputs_total += std::get<2>(t);
}
CAmount targetAmount = z_inputs_total + t_inputs_total;
if (targetAmount <= minersFee) {
throw JSONRPCError(RPC_WALLET_INSUFFICIENT_FUNDS,
strprintf("Insufficient funds, have %s and miners fee is %s",
FormatMoney(targetAmount), FormatMoney(minersFee)));
}
CAmount sendAmount = targetAmount - minersFee;
// update the transaction with the UTXO inputs and output (if any)
CMutableTransaction rawTx(tx_);
for (MergeToAddressInputUTXO& t : utxoInputs_) {
CTxIn in(std::get<0>(t));
rawTx.vin.push_back(in);
}
if (isToTaddr_) {
CScript scriptPubKey = GetScriptForDestination(toTaddr_.Get());
CTxOut out(sendAmount, scriptPubKey);
rawTx.vout.push_back(out);
}
tx_ = CTransaction(rawTx);
LogPrint(isPureTaddrOnlyTx ? "zrpc" : "zrpcunsafe", "%s: spending %s to send %s with fee %s\n",
getId(), FormatMoney(targetAmount), FormatMoney(sendAmount), FormatMoney(minersFee));
LogPrint("zrpc", "%s: transparent input: %s\n", getId(), FormatMoney(t_inputs_total));
LogPrint("zrpcunsafe", "%s: private input: %s\n", getId(), FormatMoney(z_inputs_total));
if (isToTaddr_) {
LogPrint("zrpc", "%s: transparent output: %s\n", getId(), FormatMoney(sendAmount));
} else {
LogPrint("zrpcunsafe", "%s: private output: %s\n", getId(), FormatMoney(sendAmount));
}
LogPrint("zrpc", "%s: fee: %s\n", getId(), FormatMoney(minersFee));
// Grab the current consensus branch ID
{
LOCK(cs_main);
consensusBranchId_ = CurrentEpochBranchId(chainActive.Height() + 1, Params().GetConsensus());
}
/**
* SCENARIO #1
*
* taddrs -> taddr
*
* There are no zaddrs or joinsplits involved.
*/
if (isPureTaddrOnlyTx) {
UniValue obj(UniValue::VOBJ);
obj.push_back(Pair("rawtxn", EncodeHexTx(tx_)));
sign_send_raw_transaction(obj);
return true;
}
/**
* END SCENARIO #1
*/
// Prepare raw transaction to handle JoinSplits
CMutableTransaction mtx(tx_);
crypto_sign_keypair(joinSplitPubKey_.begin(), joinSplitPrivKey_);
mtx.joinSplitPubKey = joinSplitPubKey_;
tx_ = CTransaction(mtx);
std::string hexMemo = std::get<1>(recipient_);
/**
* SCENARIO #2
*
* taddrs -> zaddr
*
* We only need a single JoinSplit.
*/
if (noteInputs_.empty() && isToZaddr_) {
// Create JoinSplit to target z-addr.
MergeToAddressJSInfo info;
info.vpub_old = sendAmount;
info.vpub_new = 0;
JSOutput jso = JSOutput(toPaymentAddress_, sendAmount);
if (hexMemo.size() > 0) {
jso.memo = get_memo_from_hex_string(hexMemo);
}
info.vjsout.push_back(jso);
UniValue obj(UniValue::VOBJ);
obj = perform_joinsplit(info);
sign_send_raw_transaction(obj);
return true;
}
/**
* END SCENARIO #2
*/
// Copy zinputs to more flexible containers
std::deque<MergeToAddressInputNote> zInputsDeque;
for (auto o : noteInputs_) {
zInputsDeque.push_back(o);
}
// When spending notes, take a snapshot of note witnesses and anchors as the treestate will
// change upon arrival of new blocks which contain joinsplit transactions. This is likely
// to happen as creating a chained joinsplit transaction can take longer than the block interval.
{
LOCK2(cs_main, pwalletMain->cs_wallet);
for (auto t : noteInputs_) {
JSOutPoint jso = std::get<0>(t);
std::vector<JSOutPoint> vOutPoints = {jso};
uint256 inputAnchor;
std::vector<boost::optional<ZCIncrementalWitness>> vInputWitnesses;
pwalletMain->GetNoteWitnesses(vOutPoints, vInputWitnesses, inputAnchor);
jsopWitnessAnchorMap[jso.ToString()] = MergeToAddressWitnessAnchorData{vInputWitnesses[0], inputAnchor};
}
}
/**
* SCENARIO #3
*
* zaddrs -> zaddr
* taddrs ->
*
* zaddrs ->
* taddrs -> taddr
*
* Send to zaddr by chaining JoinSplits together and immediately consuming any change
* Send to taddr by creating dummy z outputs and accumulating value in a change note
* which is used to set vpub_new in the last chained joinsplit.
*/
UniValue obj(UniValue::VOBJ);
CAmount jsChange = 0; // this is updated after each joinsplit
int changeOutputIndex = -1; // this is updated after each joinsplit if jsChange > 0
bool vpubOldProcessed = false; // updated when vpub_old for taddr inputs is set in first joinsplit
bool vpubNewProcessed = false; // updated when vpub_new for miner fee and taddr outputs is set in last joinsplit
// At this point, we are guaranteed to have at least one input note.
// Use address of first input note as the temporary change address.
SpendingKey changeKey = std::get<3>(zInputsDeque.front());
PaymentAddress changeAddress = changeKey.address();
CAmount vpubOldTarget = 0;
CAmount vpubNewTarget = 0;
if (isToTaddr_) {
vpubNewTarget = z_inputs_total;
} else {
if (utxoInputs_.empty()) {
vpubNewTarget = minersFee;
} else {
vpubOldTarget = t_inputs_total - minersFee;
}
}
// Keep track of treestate within this transaction
boost::unordered_map<uint256, ZCIncrementalMerkleTree, CCoinsKeyHasher> intermediates;
std::vector<uint256> previousCommitments;
while (!vpubNewProcessed) {
MergeToAddressJSInfo info;
info.vpub_old = 0;
info.vpub_new = 0;
// Set vpub_old in the first joinsplit
if (!vpubOldProcessed) {
if (t_inputs_total < vpubOldTarget) {
throw JSONRPCError(RPC_WALLET_ERROR,
strprintf("Insufficient transparent funds for vpub_old %s (miners fee %s, taddr inputs %s)",
FormatMoney(vpubOldTarget), FormatMoney(minersFee), FormatMoney(t_inputs_total)));
}
info.vpub_old += vpubOldTarget; // funds flowing from public pool
vpubOldProcessed = true;
}
CAmount jsInputValue = 0;
uint256 jsAnchor;
std::vector<boost::optional<ZCIncrementalWitness>> witnesses;
JSDescription prevJoinSplit;
// Keep track of previous JoinSplit and its commitments
if (tx_.vjoinsplit.size() > 0) {
prevJoinSplit = tx_.vjoinsplit.back();
}
// If there is no change, the chain has terminated so we can reset the tracked treestate.
if (jsChange == 0 && tx_.vjoinsplit.size() > 0) {
intermediates.clear();
previousCommitments.clear();
}
//
// Consume change as the first input of the JoinSplit.
//
if (jsChange > 0) {
LOCK2(cs_main, pwalletMain->cs_wallet);
// Update tree state with previous joinsplit
ZCIncrementalMerkleTree tree;
auto it = intermediates.find(prevJoinSplit.anchor);
if (it != intermediates.end()) {
tree = it->second;
} else if (!pcoinsTip->GetAnchorAt(prevJoinSplit.anchor, tree)) {
throw JSONRPCError(RPC_WALLET_ERROR, "Could not find previous JoinSplit anchor");
}
assert(changeOutputIndex != -1);
boost::optional<ZCIncrementalWitness> changeWitness;
int n = 0;
for (const uint256& commitment : prevJoinSplit.commitments) {
tree.append(commitment);
previousCommitments.push_back(commitment);
if (!changeWitness && changeOutputIndex == n++) {
changeWitness = tree.witness();
} else if (changeWitness) {
changeWitness.get().append(commitment);
}
}
if (changeWitness) {
witnesses.push_back(changeWitness);
}
jsAnchor = tree.root();
intermediates.insert(std::make_pair(tree.root(), tree)); // chained js are interstitial (found in between block boundaries)
// Decrypt the change note's ciphertext to retrieve some data we need
ZCNoteDecryption decryptor(changeKey.receiving_key());
auto hSig = prevJoinSplit.h_sig(*pzcashParams, tx_.joinSplitPubKey);
try {
NotePlaintext plaintext = NotePlaintext::decrypt(
decryptor,
prevJoinSplit.ciphertexts[changeOutputIndex],
prevJoinSplit.ephemeralKey,
hSig,
(unsigned char)changeOutputIndex);
Note note = plaintext.note(changeAddress);
info.notes.push_back(note);
info.zkeys.push_back(changeKey);
jsInputValue += plaintext.value;
LogPrint("zrpcunsafe", "%s: spending change (amount=%s)\n",
getId(),
FormatMoney(plaintext.value));
} catch (const std::exception& e) {
throw JSONRPCError(RPC_WALLET_ERROR, strprintf("Error decrypting output note of previous JoinSplit: %s", e.what()));
}
}
//
// Consume spendable non-change notes
//
std::vector<Note> vInputNotes;
std::vector<SpendingKey> vInputZKeys;
std::vector<JSOutPoint> vOutPoints;
std::vector<boost::optional<ZCIncrementalWitness>> vInputWitnesses;
uint256 inputAnchor;
int numInputsNeeded = (jsChange > 0) ? 1 : 0;
while (numInputsNeeded++ < ZC_NUM_JS_INPUTS && zInputsDeque.size() > 0) {
MergeToAddressInputNote t = zInputsDeque.front();
JSOutPoint jso = std::get<0>(t);
Note note = std::get<1>(t);
CAmount noteFunds = std::get<2>(t);
SpendingKey zkey = std::get<3>(t);
zInputsDeque.pop_front();
MergeToAddressWitnessAnchorData wad = jsopWitnessAnchorMap[jso.ToString()];
vInputWitnesses.push_back(wad.witness);
if (inputAnchor.IsNull()) {
inputAnchor = wad.anchor;
} else if (inputAnchor != wad.anchor) {
throw JSONRPCError(RPC_WALLET_ERROR, "Selected input notes do not share the same anchor");
}
vOutPoints.push_back(jso);
vInputNotes.push_back(note);
vInputZKeys.push_back(zkey);
jsInputValue += noteFunds;
int wtxHeight = -1;
int wtxDepth = -1;
{
LOCK2(cs_main, pwalletMain->cs_wallet);
const CWalletTx& wtx = pwalletMain->mapWallet[jso.hash];
// Zero confirmation notes belong to transactions which have not yet been mined
if (mapBlockIndex.find(wtx.hashBlock) == mapBlockIndex.end()) {
throw JSONRPCError(RPC_WALLET_ERROR, strprintf("mapBlockIndex does not contain block hash %s", wtx.hashBlock.ToString()));
}
wtxHeight = mapBlockIndex[wtx.hashBlock]->nHeight;
wtxDepth = wtx.GetDepthInMainChain();
}
LogPrint("zrpcunsafe", "%s: spending note (txid=%s, vjoinsplit=%d, ciphertext=%d, amount=%s, height=%d, confirmations=%d)\n",
getId(),
jso.hash.ToString().substr(0, 10),
jso.js,
int(jso.n), // uint8_t
FormatMoney(noteFunds),
wtxHeight,
wtxDepth);
}
// Add history of previous commitments to witness
if (vInputNotes.size() > 0) {
if (vInputWitnesses.size() == 0) {
throw JSONRPCError(RPC_WALLET_ERROR, "Could not find witness for note commitment");
}
for (auto& optionalWitness : vInputWitnesses) {
if (!optionalWitness) {
throw JSONRPCError(RPC_WALLET_ERROR, "Witness for note commitment is null");
}
ZCIncrementalWitness w = *optionalWitness; // could use .get();
if (jsChange > 0) {
for (const uint256& commitment : previousCommitments) {
w.append(commitment);
}
if (jsAnchor != w.root()) {
throw JSONRPCError(RPC_WALLET_ERROR, "Witness for spendable note does not have same anchor as change input");
}
}
witnesses.push_back(w);
}
// The jsAnchor is null if this JoinSplit is at the start of a new chain
if (jsAnchor.IsNull()) {
jsAnchor = inputAnchor;
}
// Add spendable notes as inputs
std::copy(vInputNotes.begin(), vInputNotes.end(), std::back_inserter(info.notes));
std::copy(vInputZKeys.begin(), vInputZKeys.end(), std::back_inserter(info.zkeys));
}
// Accumulate change
jsChange = jsInputValue + info.vpub_old;
// Set vpub_new in the last joinsplit (when there are no more notes to spend)
if (zInputsDeque.empty()) {
assert(!vpubNewProcessed);
if (jsInputValue < vpubNewTarget) {
throw JSONRPCError(RPC_WALLET_ERROR,
strprintf("Insufficient funds for vpub_new %s (miners fee %s, taddr inputs %s)",
FormatMoney(vpubNewTarget), FormatMoney(minersFee), FormatMoney(t_inputs_total)));
}
info.vpub_new += vpubNewTarget; // funds flowing back to public pool
vpubNewProcessed = true;
jsChange -= vpubNewTarget;
// If we are merging to a t-addr, there should be no change
if (isToTaddr_) assert(jsChange == 0);
}
// create dummy output
info.vjsout.push_back(JSOutput()); // dummy output while we accumulate funds into a change note for vpub_new
// create output for any change
if (jsChange > 0) {
std::string outputType = "change";
auto jso = JSOutput(changeAddress, jsChange);
// If this is the final output, set the target and memo
if (isToZaddr_ && vpubNewProcessed) {
outputType = "target";
jso.addr = toPaymentAddress_;
if (!hexMemo.empty()) {
jso.memo = get_memo_from_hex_string(hexMemo);
}
}
info.vjsout.push_back(jso);
LogPrint("zrpcunsafe", "%s: generating note for %s (amount=%s)\n",
getId(),
outputType,
FormatMoney(jsChange));
}
obj = perform_joinsplit(info, witnesses, jsAnchor);
if (jsChange > 0) {
changeOutputIndex = mta_find_output(obj, 1);
}
}
// Sanity check in case changes to code block above exits loop by invoking 'break'
assert(zInputsDeque.size() == 0);
assert(vpubNewProcessed);
sign_send_raw_transaction(obj);
return true;
}
/**
* Sign and send a raw transaction.
* Raw transaction as hex string should be in object field "rawtxn"
*/
void AsyncRPCOperation_mergetoaddress::sign_send_raw_transaction(UniValue obj)
{
// Sign the raw transaction
UniValue rawtxnValue = find_value(obj, "rawtxn");
if (rawtxnValue.isNull()) {
throw JSONRPCError(RPC_WALLET_ERROR, "Missing hex data for raw transaction");
}
std::string rawtxn = rawtxnValue.get_str();
UniValue params = UniValue(UniValue::VARR);
params.push_back(rawtxn);
UniValue signResultValue = signrawtransaction(params, false);
UniValue signResultObject = signResultValue.get_obj();
UniValue completeValue = find_value(signResultObject, "complete");
bool complete = completeValue.get_bool();
if (!complete) {
// TODO: #1366 Maybe get "errors" and print array vErrors into a string
throw JSONRPCError(RPC_WALLET_ENCRYPTION_FAILED, "Failed to sign transaction");
}
UniValue hexValue = find_value(signResultObject, "hex");
if (hexValue.isNull()) {
throw JSONRPCError(RPC_WALLET_ERROR, "Missing hex data for signed transaction");
}
std::string signedtxn = hexValue.get_str();
// Send the signed transaction
if (!testmode) {
params.clear();
params.setArray();
params.push_back(signedtxn);
UniValue sendResultValue = sendrawtransaction(params, false);
if (sendResultValue.isNull()) {
throw JSONRPCError(RPC_WALLET_ERROR, "Send raw transaction did not return an error or a txid.");
}
std::string txid = sendResultValue.get_str();
UniValue o(UniValue::VOBJ);
o.push_back(Pair("txid", txid));
set_result(o);
} else {
// Test mode does not send the transaction to the network.
CDataStream stream(ParseHex(signedtxn), SER_NETWORK, PROTOCOL_VERSION);
CTransaction tx;
stream >> tx;
UniValue o(UniValue::VOBJ);
o.push_back(Pair("test", 1));
o.push_back(Pair("txid", tx.GetHash().ToString()));
o.push_back(Pair("hex", signedtxn));
set_result(o);
}
// Keep the signed transaction so we can hash to the same txid
CDataStream stream(ParseHex(signedtxn), SER_NETWORK, PROTOCOL_VERSION);
CTransaction tx;
stream >> tx;
tx_ = tx;
}
UniValue AsyncRPCOperation_mergetoaddress::perform_joinsplit(MergeToAddressJSInfo& info)
{
std::vector<boost::optional<ZCIncrementalWitness>> witnesses;
uint256 anchor;
{
LOCK(cs_main);
anchor = pcoinsTip->GetBestAnchor(); // As there are no inputs, ask the wallet for the best anchor
}
return perform_joinsplit(info, witnesses, anchor);
}
UniValue AsyncRPCOperation_mergetoaddress::perform_joinsplit(MergeToAddressJSInfo& info, std::vector<JSOutPoint>& outPoints)
{
std::vector<boost::optional<ZCIncrementalWitness>> witnesses;
uint256 anchor;
{
LOCK(cs_main);
pwalletMain->GetNoteWitnesses(outPoints, witnesses, anchor);
}
return perform_joinsplit(info, witnesses, anchor);
}
UniValue AsyncRPCOperation_mergetoaddress::perform_joinsplit(
MergeToAddressJSInfo& info,
std::vector<boost::optional<ZCIncrementalWitness>> witnesses,
uint256 anchor)
{
if (anchor.IsNull()) {
throw std::runtime_error("anchor is null");
}
if (witnesses.size() != info.notes.size()) {
throw runtime_error("number of notes and witnesses do not match");
}
if (info.notes.size() != info.zkeys.size()) {
throw runtime_error("number of notes and spending keys do not match");
}
for (size_t i = 0; i < witnesses.size(); i++) {
if (!witnesses[i]) {
throw runtime_error("joinsplit input could not be found in tree");
}
info.vjsin.push_back(JSInput(*witnesses[i], info.notes[i], info.zkeys[i]));
}
// Make sure there are two inputs and two outputs
while (info.vjsin.size() < ZC_NUM_JS_INPUTS) {
info.vjsin.push_back(JSInput());
}
while (info.vjsout.size() < ZC_NUM_JS_OUTPUTS) {
info.vjsout.push_back(JSOutput());
}
if (info.vjsout.size() != ZC_NUM_JS_INPUTS || info.vjsin.size() != ZC_NUM_JS_OUTPUTS) {
throw runtime_error("unsupported joinsplit input/output counts");
}
CMutableTransaction mtx(tx_);
LogPrint("zrpcunsafe", "%s: creating joinsplit at index %d (vpub_old=%s, vpub_new=%s, in[0]=%s, in[1]=%s, out[0]=%s, out[1]=%s)\n",
getId(),
tx_.vjoinsplit.size(),
FormatMoney(info.vpub_old), FormatMoney(info.vpub_new),
FormatMoney(info.vjsin[0].note.value), FormatMoney(info.vjsin[1].note.value),
FormatMoney(info.vjsout[0].value), FormatMoney(info.vjsout[1].value));
// Generate the proof, this can take over a minute.
boost::array<libzcash::JSInput, ZC_NUM_JS_INPUTS> inputs{info.vjsin[0], info.vjsin[1]};
boost::array<libzcash::JSOutput, ZC_NUM_JS_OUTPUTS> outputs{info.vjsout[0], info.vjsout[1]};
boost::array<size_t, ZC_NUM_JS_INPUTS> inputMap;
boost::array<size_t, ZC_NUM_JS_OUTPUTS> outputMap;
uint256 esk; // payment disclosure - secret
JSDescription jsdesc = JSDescription::Randomized(
*pzcashParams,
joinSplitPubKey_,
anchor,
inputs,
outputs,
inputMap,
outputMap,
info.vpub_old,
info.vpub_new,
!this->testmode,
&esk); // parameter expects pointer to esk, so pass in address
{
auto verifier = libzcash::ProofVerifier::Strict();
if (!(jsdesc.Verify(*pzcashParams, verifier, joinSplitPubKey_))) {
throw std::runtime_error("error verifying joinsplit");
}
}
mtx.vjoinsplit.push_back(jsdesc);
// Empty output script.
CScript scriptCode;
CTransaction signTx(mtx);
uint256 dataToBeSigned = SignatureHash(scriptCode, signTx, NOT_AN_INPUT, SIGHASH_ALL, 0, consensusBranchId_);
// Add the signature
if (!(crypto_sign_detached(&mtx.joinSplitSig[0], NULL,
dataToBeSigned.begin(), 32,
joinSplitPrivKey_) == 0)) {
throw std::runtime_error("crypto_sign_detached failed");
}
// Sanity check
if (!(crypto_sign_verify_detached(&mtx.joinSplitSig[0],
dataToBeSigned.begin(), 32,
mtx.joinSplitPubKey.begin()) == 0)) {
throw std::runtime_error("crypto_sign_verify_detached failed");
}
CTransaction rawTx(mtx);
tx_ = rawTx;
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss << rawTx;
std::string encryptedNote1;
std::string encryptedNote2;
{
CDataStream ss2(SER_NETWORK, PROTOCOL_VERSION);
ss2 << ((unsigned char)0x00);
ss2 << jsdesc.ephemeralKey;
ss2 << jsdesc.ciphertexts[0];
ss2 << jsdesc.h_sig(*pzcashParams, joinSplitPubKey_);
encryptedNote1 = HexStr(ss2.begin(), ss2.end());
}
{
CDataStream ss2(SER_NETWORK, PROTOCOL_VERSION);
ss2 << ((unsigned char)0x01);
ss2 << jsdesc.ephemeralKey;
ss2 << jsdesc.ciphertexts[1];
ss2 << jsdesc.h_sig(*pzcashParams, joinSplitPubKey_);
encryptedNote2 = HexStr(ss2.begin(), ss2.end());
}
UniValue arrInputMap(UniValue::VARR);
UniValue arrOutputMap(UniValue::VARR);
for (size_t i = 0; i < ZC_NUM_JS_INPUTS; i++) {
arrInputMap.push_back(inputMap[i]);
}
for (size_t i = 0; i < ZC_NUM_JS_OUTPUTS; i++) {
arrOutputMap.push_back(outputMap[i]);
}
// !!! Payment disclosure START
unsigned char buffer[32] = {0};
memcpy(&buffer[0], &joinSplitPrivKey_[0], 32); // private key in first half of 64 byte buffer
std::vector<unsigned char> vch(&buffer[0], &buffer[0] + 32);
uint256 joinSplitPrivKey = uint256(vch);
size_t js_index = tx_.vjoinsplit.size() - 1;
uint256 placeholder;
for (int i = 0; i < ZC_NUM_JS_OUTPUTS; i++) {
uint8_t mapped_index = outputMap[i];
// placeholder for txid will be filled in later when tx has been finalized and signed.
PaymentDisclosureKey pdKey = {placeholder, js_index, mapped_index};
JSOutput output = outputs[mapped_index];
libzcash::PaymentAddress zaddr = output.addr; // randomized output
PaymentDisclosureInfo pdInfo = {PAYMENT_DISCLOSURE_VERSION_EXPERIMENTAL, esk, joinSplitPrivKey, zaddr};
paymentDisclosureData_.push_back(PaymentDisclosureKeyInfo(pdKey, pdInfo));
CZCPaymentAddress address(zaddr);
LogPrint("paymentdisclosure", "%s: Payment Disclosure: js=%d, n=%d, zaddr=%s\n", getId(), js_index, int(mapped_index), address.ToString());
}
// !!! Payment disclosure END
UniValue obj(UniValue::VOBJ);
obj.push_back(Pair("encryptednote1", encryptedNote1));
obj.push_back(Pair("encryptednote2", encryptedNote2));
obj.push_back(Pair("rawtxn", HexStr(ss.begin(), ss.end())));
obj.push_back(Pair("inputmap", arrInputMap));
obj.push_back(Pair("outputmap", arrOutputMap));
return obj;
}
boost::array<unsigned char, ZC_MEMO_SIZE> AsyncRPCOperation_mergetoaddress::get_memo_from_hex_string(std::string s)
{
boost::array<unsigned char, ZC_MEMO_SIZE> memo = {{0x00}};
std::vector<unsigned char> rawMemo = ParseHex(s.c_str());
// If ParseHex comes across a non-hex char, it will stop but still return results so far.
size_t slen = s.length();
if (slen % 2 != 0 || (slen > 0 && rawMemo.size() != slen / 2)) {
throw JSONRPCError(RPC_INVALID_PARAMETER, "Memo must be in hexadecimal format");
}
if (rawMemo.size() > ZC_MEMO_SIZE) {
throw JSONRPCError(RPC_INVALID_PARAMETER, strprintf("Memo size of %d is too big, maximum allowed is %d", rawMemo.size(), ZC_MEMO_SIZE));
}
// copy vector into boost array
int lenMemo = rawMemo.size();
for (int i = 0; i < ZC_MEMO_SIZE && i < lenMemo; i++) {
memo[i] = rawMemo[i];
}
return memo;
}
/**
* Override getStatus() to append the operation's input parameters to the default status object.
*/
UniValue AsyncRPCOperation_mergetoaddress::getStatus() const
{
UniValue v = AsyncRPCOperation::getStatus();
if (contextinfo_.isNull()) {
return v;
}
UniValue obj = v.get_obj();
obj.push_back(Pair("method", "z_mergetoaddress"));
obj.push_back(Pair("params", contextinfo_));
return obj;
}
/**
* Lock input utxos
*/
void AsyncRPCOperation_mergetoaddress::lock_utxos() {
LOCK2(cs_main, pwalletMain->cs_wallet);
for (auto utxo : utxoInputs_) {
pwalletMain->LockCoin(std::get<0>(utxo));
}
}
/**
* Unlock input utxos
*/
void AsyncRPCOperation_mergetoaddress::unlock_utxos() {
LOCK2(cs_main, pwalletMain->cs_wallet);
for (auto utxo : utxoInputs_) {
pwalletMain->UnlockCoin(std::get<0>(utxo));
}
}
/**
* Lock input notes
*/
void AsyncRPCOperation_mergetoaddress::lock_notes() {
LOCK2(cs_main, pwalletMain->cs_wallet);
for (auto note : noteInputs_) {
pwalletMain->LockNote(std::get<0>(note));
}
}
/**
* Unlock input notes
*/
void AsyncRPCOperation_mergetoaddress::unlock_notes() {
LOCK2(cs_main, pwalletMain->cs_wallet);
for (auto note : noteInputs_) {
pwalletMain->UnlockNote(std::get<0>(note));
}
}

193
src/wallet/asyncrpcoperation_mergetoaddress.h

@ -0,0 +1,193 @@
// Copyright (c) 2017 The Zcash developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef ASYNCRPCOPERATION_MERGETOADDRESS_H
#define ASYNCRPCOPERATION_MERGETOADDRESS_H
#include "amount.h"
#include "asyncrpcoperation.h"
#include "base58.h"
#include "paymentdisclosure.h"
#include "primitives/transaction.h"
#include "wallet.h"
#include "zcash/Address.hpp"
#include "zcash/JoinSplit.hpp"
#include <tuple>
#include <unordered_map>
#include <univalue.h>
// Default transaction fee if caller does not specify one.
#define MERGE_TO_ADDRESS_OPERATION_DEFAULT_MINERS_FEE 10000
using namespace libzcash;
// Input UTXO is a tuple of txid, vout, amount
typedef std::tuple<COutPoint, CAmount> MergeToAddressInputUTXO;
// Input JSOP is a tuple of JSOutpoint, note, amount, spending key
typedef std::tuple<JSOutPoint, Note, CAmount, SpendingKey> MergeToAddressInputNote;
// A recipient is a tuple of address, memo (optional if zaddr)
typedef std::tuple<std::string, std::string> MergeToAddressRecipient;
// Package of info which is passed to perform_joinsplit methods.
struct MergeToAddressJSInfo {
std::vector<JSInput> vjsin;
std::vector<JSOutput> vjsout;
std::vector<Note> notes;
std::vector<SpendingKey> zkeys;
CAmount vpub_old = 0;
CAmount vpub_new = 0;
};
// A struct to help us track the witness and anchor for a given JSOutPoint
struct MergeToAddressWitnessAnchorData {
boost::optional<ZCIncrementalWitness> witness;
uint256 anchor;
};
class AsyncRPCOperation_mergetoaddress : public AsyncRPCOperation
{
public:
AsyncRPCOperation_mergetoaddress(
CMutableTransaction contextualTx,
std::vector<MergeToAddressInputUTXO> utxoInputs,
std::vector<MergeToAddressInputNote> noteInputs,
MergeToAddressRecipient recipient,
CAmount fee = MERGE_TO_ADDRESS_OPERATION_DEFAULT_MINERS_FEE,
UniValue contextInfo = NullUniValue);
virtual ~AsyncRPCOperation_mergetoaddress();
// We don't want to be copied or moved around
AsyncRPCOperation_mergetoaddress(AsyncRPCOperation_mergetoaddress const&) = delete; // Copy construct
AsyncRPCOperation_mergetoaddress(AsyncRPCOperation_mergetoaddress&&) = delete; // Move construct
AsyncRPCOperation_mergetoaddress& operator=(AsyncRPCOperation_mergetoaddress const&) = delete; // Copy assign
AsyncRPCOperation_mergetoaddress& operator=(AsyncRPCOperation_mergetoaddress&&) = delete; // Move assign
virtual void main();
virtual UniValue getStatus() const;
bool testmode = false; // Set to true to disable sending txs and generating proofs
bool paymentDisclosureMode = false; // Set to true to save esk for encrypted notes in payment disclosure database.
private:
friend class TEST_FRIEND_AsyncRPCOperation_mergetoaddress; // class for unit testing
UniValue contextinfo_; // optional data to include in return value from getStatus()
uint32_t consensusBranchId_;
CAmount fee_;
int mindepth_;
MergeToAddressRecipient recipient_;
bool isToTaddr_;
bool isToZaddr_;
CBitcoinAddress toTaddr_;
PaymentAddress toPaymentAddress_;
uint256 joinSplitPubKey_;
unsigned char joinSplitPrivKey_[crypto_sign_SECRETKEYBYTES];
// The key is the result string from calling JSOutPoint::ToString()
std::unordered_map<std::string, MergeToAddressWitnessAnchorData> jsopWitnessAnchorMap;
std::vector<MergeToAddressInputUTXO> utxoInputs_;
std::vector<MergeToAddressInputNote> noteInputs_;
CTransaction tx_;
boost::array<unsigned char, ZC_MEMO_SIZE> get_memo_from_hex_string(std::string s);
bool main_impl();
// JoinSplit without any input notes to spend
UniValue perform_joinsplit(MergeToAddressJSInfo&);
// JoinSplit with input notes to spend (JSOutPoints))
UniValue perform_joinsplit(MergeToAddressJSInfo&, std::vector<JSOutPoint>&);
// JoinSplit where you have the witnesses and anchor
UniValue perform_joinsplit(
MergeToAddressJSInfo& info,
std::vector<boost::optional<ZCIncrementalWitness>> witnesses,
uint256 anchor);
void sign_send_raw_transaction(UniValue obj); // throws exception if there was an error
void lock_utxos();
void unlock_utxos();
void lock_notes();
void unlock_notes();
// payment disclosure!
std::vector<PaymentDisclosureKeyInfo> paymentDisclosureData_;
};
// To test private methods, a friend class can act as a proxy
class TEST_FRIEND_AsyncRPCOperation_mergetoaddress
{
public:
std::shared_ptr<AsyncRPCOperation_mergetoaddress> delegate;
TEST_FRIEND_AsyncRPCOperation_mergetoaddress(std::shared_ptr<AsyncRPCOperation_mergetoaddress> ptr) : delegate(ptr) {}
CTransaction getTx()
{
return delegate->tx_;
}
void setTx(CTransaction tx)
{
delegate->tx_ = tx;
}
// Delegated methods
boost::array<unsigned char, ZC_MEMO_SIZE> get_memo_from_hex_string(std::string s)
{
return delegate->get_memo_from_hex_string(s);
}
bool main_impl()
{
return delegate->main_impl();
}
UniValue perform_joinsplit(MergeToAddressJSInfo& info)
{
return delegate->perform_joinsplit(info);
}
UniValue perform_joinsplit(MergeToAddressJSInfo& info, std::vector<JSOutPoint>& v)
{
return delegate->perform_joinsplit(info, v);
}
UniValue perform_joinsplit(
MergeToAddressJSInfo& info,
std::vector<boost::optional<ZCIncrementalWitness>> witnesses,
uint256 anchor)
{
return delegate->perform_joinsplit(info, witnesses, anchor);
}
void sign_send_raw_transaction(UniValue obj)
{
delegate->sign_send_raw_transaction(obj);
}
void set_state(OperationStatus state)
{
delegate->state_.store(state);
}
};
#endif /* ASYNCRPCOPERATION_MERGETOADDRESS_H */

33
src/wallet/gtest/test_wallet.cpp

@ -1046,3 +1046,36 @@ TEST(wallet_tests, MarkAffectedTransactionsDirty) {
wallet.MarkAffectedTransactionsDirty(wtx2);
EXPECT_FALSE(wallet.mapWallet[hash].fDebitCached);
}
TEST(wallet_tests, NoteLocking) {
TestWallet wallet;
auto sk = libzcash::SpendingKey::random();
wallet.AddSpendingKey(sk);
auto wtx = GetValidReceive(sk, 10, true);
auto wtx2 = GetValidReceive(sk, 10, true);
JSOutPoint jsoutpt {wtx.GetHash(), 0, 0};
JSOutPoint jsoutpt2 {wtx2.GetHash(),0, 0};
// Test selective locking
wallet.LockNote(jsoutpt);
EXPECT_TRUE(wallet.IsLockedNote(jsoutpt.hash, jsoutpt.js, jsoutpt.n));
EXPECT_FALSE(wallet.IsLockedNote(jsoutpt2.hash, jsoutpt2.js, jsoutpt2.n));
// Test selective unlocking
wallet.UnlockNote(jsoutpt);
EXPECT_FALSE(wallet.IsLockedNote(jsoutpt.hash, jsoutpt.js, jsoutpt.n));
// Test multiple locking
wallet.LockNote(jsoutpt);
wallet.LockNote(jsoutpt2);
EXPECT_TRUE(wallet.IsLockedNote(jsoutpt.hash, jsoutpt.js, jsoutpt.n));
EXPECT_TRUE(wallet.IsLockedNote(jsoutpt2.hash, jsoutpt2.js, jsoutpt2.n));
// Test unlock all
wallet.UnlockAllNotes();
EXPECT_FALSE(wallet.IsLockedNote(jsoutpt.hash, jsoutpt.js, jsoutpt.n));
EXPECT_FALSE(wallet.IsLockedNote(jsoutpt2.hash, jsoutpt2.js, jsoutpt2.n));
}

41
src/wallet/wallet.cpp

@ -3415,6 +3415,42 @@ void CWallet::ListLockedCoins(std::vector<COutPoint>& vOutpts)
}
}
// Note Locking Operations
void CWallet::LockNote(JSOutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedNotes
setLockedNotes.insert(output);
}
void CWallet::UnlockNote(JSOutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedNotes
setLockedNotes.erase(output);
}
void CWallet::UnlockAllNotes()
{
AssertLockHeld(cs_wallet); // setLockedNotes
setLockedNotes.clear();
}
bool CWallet::IsLockedNote(uint256 hash, size_t js, uint8_t n) const
{
AssertLockHeld(cs_wallet); // setLockedNotes
JSOutPoint outpt(hash, js, n);
return (setLockedNotes.count(outpt) > 0);
}
std::vector<JSOutPoint> CWallet::ListLockedNotes()
{
AssertLockHeld(cs_wallet); // setLockedNotes
std::vector<JSOutPoint> vOutpts(setLockedNotes.begin(), setLockedNotes.end());
return vOutpts;
}
/** @} */ // end of Actions
class CAffectedKeysVisitor : public boost::static_visitor<void> {
@ -3690,6 +3726,11 @@ void CWallet::GetFilteredNotes(std::vector<CNotePlaintextEntry> & outEntries, st
if (ignoreUnspendable && !HaveSpendingKey(pa)) {
continue;
}
// skip locked notes
if (IsLockedNote(jsop.hash, jsop.js, jsop.n)) {
continue;
}
int i = jsop.js; // Index into CTransaction.vjoinsplit
int j = jsop.n; // Index into JSDescription.ciphertexts

9
src/wallet/wallet.h

@ -882,6 +882,7 @@ public:
CPubKey vchDefaultKey;
std::set<COutPoint> setLockedCoins;
std::set<JSOutPoint> setLockedNotes;
int64_t nTimeFirstKey;
@ -902,6 +903,14 @@ public:
void UnlockAllCoins();
void ListLockedCoins(std::vector<COutPoint>& vOutpts);
bool IsLockedNote(uint256 hash, size_t js, uint8_t n) const;
void LockNote(JSOutPoint& output);
void UnlockNote(JSOutPoint& output);
void UnlockAllNotes();
std::vector<JSOutPoint> ListLockedNotes();
/**
* keystore implementation
* Generate a new key

Loading…
Cancel
Save