// Copyright (c) 2012-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "coins.h" #include "memusage.h" #include "random.h" #include "version.h" #include "policy/fees.h" #include /** * calculate number of bytes for the bitmask, and its number of non-zero bytes * each bit in the bitmask represents the availability of one output, but the * availabilities of the first two outputs are encoded separately */ void CCoins::CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const { unsigned int nLastUsedByte = 0; for (unsigned int b = 0; 2+b*8 < vout.size(); b++) { bool fZero = true; for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) { if (!vout[2+b*8+i].IsNull()) { fZero = false; continue; } } if (!fZero) { nLastUsedByte = b + 1; nNonzeroBytes++; } } nBytes += nLastUsedByte; } bool CCoins::Spend(uint32_t nPos) { if (nPos >= vout.size() || vout[nPos].IsNull()) return false; vout[nPos].SetNull(); Cleanup(); return true; } bool CCoinsView::GetAnchorAt(const uint256 &rt, ZCIncrementalMerkleTree &tree) const { return false; } bool CCoinsView::GetNullifier(const uint256 &nullifier) const { return false; } bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) const { return false; } bool CCoinsView::HaveCoins(const uint256 &txid) const { return false; } uint256 CCoinsView::GetBestBlock() const { return uint256(); } uint256 CCoinsView::GetBestAnchor() const { return uint256(); }; bool CCoinsView::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock, const uint256 &hashAnchor, CAnchorsMap &mapAnchors, CNullifiersMap &mapNullifiers) { return false; } bool CCoinsView::GetStats(CCoinsStats &stats) const { return false; } CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { } bool CCoinsViewBacked::GetAnchorAt(const uint256 &rt, ZCIncrementalMerkleTree &tree) const { return base->GetAnchorAt(rt, tree); } bool CCoinsViewBacked::GetNullifier(const uint256 &nullifier) const { return base->GetNullifier(nullifier); } bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) const { return base->GetCoins(txid, coins); } bool CCoinsViewBacked::HaveCoins(const uint256 &txid) const { return base->HaveCoins(txid); } uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); } uint256 CCoinsViewBacked::GetBestAnchor() const { return base->GetBestAnchor(); } void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; } bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock, const uint256 &hashAnchor, CAnchorsMap &mapAnchors, CNullifiersMap &mapNullifiers) { return base->BatchWrite(mapCoins, hashBlock, hashAnchor, mapAnchors, mapNullifiers); } bool CCoinsViewBacked::GetStats(CCoinsStats &stats) const { return base->GetStats(stats); } CCoinsKeyHasher::CCoinsKeyHasher() : salt(GetRandHash()) {} CCoinsViewCache::CCoinsViewCache(CCoinsView *baseIn) : CCoinsViewBacked(baseIn), hasModifier(false), cachedCoinsUsage(0) { } CCoinsViewCache::~CCoinsViewCache() { assert(!hasModifier); } size_t CCoinsViewCache::DynamicMemoryUsage() const { return memusage::DynamicUsage(cacheCoins) + memusage::DynamicUsage(cacheAnchors) + memusage::DynamicUsage(cacheNullifiers) + cachedCoinsUsage; } CCoinsMap::const_iterator CCoinsViewCache::FetchCoins(const uint256 &txid) const { CCoinsMap::iterator it = cacheCoins.find(txid); if (it != cacheCoins.end()) return it; CCoins tmp; if (!base->GetCoins(txid, tmp)) return cacheCoins.end(); CCoinsMap::iterator ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())).first; tmp.swap(ret->second.coins); if (ret->second.coins.IsPruned()) { // The parent only has an empty entry for this txid; we can consider our // version as fresh. ret->second.flags = CCoinsCacheEntry::FRESH; } cachedCoinsUsage += ret->second.coins.DynamicMemoryUsage(); return ret; } bool CCoinsViewCache::GetAnchorAt(const uint256 &rt, ZCIncrementalMerkleTree &tree) const { CAnchorsMap::const_iterator it = cacheAnchors.find(rt); if (it != cacheAnchors.end()) { if (it->second.entered) { tree = it->second.tree; return true; } else { return false; } } if (!base->GetAnchorAt(rt, tree)) { return false; } CAnchorsMap::iterator ret = cacheAnchors.insert(std::make_pair(rt, CAnchorsCacheEntry())).first; ret->second.entered = true; ret->second.tree = tree; cachedCoinsUsage += ret->second.tree.DynamicMemoryUsage(); return true; } bool CCoinsViewCache::GetNullifier(const uint256 &nullifier) const { CNullifiersMap::iterator it = cacheNullifiers.find(nullifier); if (it != cacheNullifiers.end()) return it->second.entered; CNullifiersCacheEntry entry; bool tmp = base->GetNullifier(nullifier); entry.entered = tmp; cacheNullifiers.insert(std::make_pair(nullifier, entry)); return tmp; } void CCoinsViewCache::PushAnchor(const ZCIncrementalMerkleTree &tree) { uint256 newrt = tree.root(); auto currentRoot = GetBestAnchor(); // We don't want to overwrite an anchor we already have. // This occurs when a block doesn't modify mapAnchors at all, // because there are no joinsplits. We could get around this a // different way (make all blocks modify mapAnchors somehow) // but this is simpler to reason about. if (currentRoot != newrt) { auto insertRet = cacheAnchors.insert(std::make_pair(newrt, CAnchorsCacheEntry())); CAnchorsMap::iterator ret = insertRet.first; ret->second.entered = true; ret->second.tree = tree; ret->second.flags = CAnchorsCacheEntry::DIRTY; if (insertRet.second) { // An insert took place cachedCoinsUsage += ret->second.tree.DynamicMemoryUsage(); } hashAnchor = newrt; } } void CCoinsViewCache::PopAnchor(const uint256 &newrt) { auto currentRoot = GetBestAnchor(); // Blocks might not change the commitment tree, in which // case restoring the "old" anchor during a reorg must // have no effect. if (currentRoot != newrt) { // Bring the current best anchor into our local cache // so that its tree exists in memory. { ZCIncrementalMerkleTree tree; assert(GetAnchorAt(currentRoot, tree)); } // Mark the anchor as unentered, removing it from view cacheAnchors[currentRoot].entered = false; // Mark the cache entry as dirty so it's propagated cacheAnchors[currentRoot].flags = CAnchorsCacheEntry::DIRTY; // Mark the new root as the best anchor hashAnchor = newrt; } } void CCoinsViewCache::SetNullifier(const uint256 &nullifier, bool spent) { std::pair ret = cacheNullifiers.insert(std::make_pair(nullifier, CNullifiersCacheEntry())); ret.first->second.entered = spent; ret.first->second.flags |= CNullifiersCacheEntry::DIRTY; } bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) const { CCoinsMap::const_iterator it = FetchCoins(txid); if (it != cacheCoins.end()) { coins = it->second.coins; return true; } return false; } CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) { assert(!hasModifier); std::pair ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())); size_t cachedCoinUsage = 0; if (ret.second) { if (!base->GetCoins(txid, ret.first->second.coins)) { // The parent view does not have this entry; mark it as fresh. ret.first->second.coins.Clear(); ret.first->second.flags = CCoinsCacheEntry::FRESH; } else if (ret.first->second.coins.IsPruned()) { // The parent view only has a pruned entry for this; mark it as fresh. ret.first->second.flags = CCoinsCacheEntry::FRESH; } } else { cachedCoinUsage = ret.first->second.coins.DynamicMemoryUsage(); } // Assume that whenever ModifyCoins is called, the entry will be modified. ret.first->second.flags |= CCoinsCacheEntry::DIRTY; return CCoinsModifier(*this, ret.first, cachedCoinUsage); } const CCoins* CCoinsViewCache::AccessCoins(const uint256 &txid) const { CCoinsMap::const_iterator it = FetchCoins(txid); if (it == cacheCoins.end()) { return NULL; } else { return &it->second.coins; } } bool CCoinsViewCache::HaveCoins(const uint256 &txid) const { CCoinsMap::const_iterator it = FetchCoins(txid); // We're using vtx.empty() instead of IsPruned here for performance reasons, // as we only care about the case where a transaction was replaced entirely // in a reorganization (which wipes vout entirely, as opposed to spending // which just cleans individual outputs). return (it != cacheCoins.end() && !it->second.coins.vout.empty()); } uint256 CCoinsViewCache::GetBestBlock() const { if (hashBlock.IsNull()) hashBlock = base->GetBestBlock(); return hashBlock; } uint256 CCoinsViewCache::GetBestAnchor() const { if (hashAnchor.IsNull()) hashAnchor = base->GetBestAnchor(); return hashAnchor; } void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) { hashBlock = hashBlockIn; } bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlockIn, const uint256 &hashAnchorIn, CAnchorsMap &mapAnchors, CNullifiersMap &mapNullifiers) { assert(!hasModifier); for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) { if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization). CCoinsMap::iterator itUs = cacheCoins.find(it->first); if (itUs == cacheCoins.end()) { if (!it->second.coins.IsPruned()) { // The parent cache does not have an entry, while the child // cache does have (a non-pruned) one. Move the data up, and // mark it as fresh (if the grandparent did have it, we // would have pulled it in at first GetCoins). assert(it->second.flags & CCoinsCacheEntry::FRESH); CCoinsCacheEntry& entry = cacheCoins[it->first]; entry.coins.swap(it->second.coins); cachedCoinsUsage += entry.coins.DynamicMemoryUsage(); entry.flags = CCoinsCacheEntry::DIRTY | CCoinsCacheEntry::FRESH; } } else { if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) { // The grandparent does not have an entry, and the child is // modified and being pruned. This means we can just delete // it from the parent. cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage(); cacheCoins.erase(itUs); } else { // A normal modification. cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage(); itUs->second.coins.swap(it->second.coins); cachedCoinsUsage += itUs->second.coins.DynamicMemoryUsage(); itUs->second.flags |= CCoinsCacheEntry::DIRTY; } } } CCoinsMap::iterator itOld = it++; mapCoins.erase(itOld); } for (CAnchorsMap::iterator child_it = mapAnchors.begin(); child_it != mapAnchors.end();) { if (child_it->second.flags & CAnchorsCacheEntry::DIRTY) { CAnchorsMap::iterator parent_it = cacheAnchors.find(child_it->first); if (parent_it == cacheAnchors.end()) { CAnchorsCacheEntry& entry = cacheAnchors[child_it->first]; entry.entered = child_it->second.entered; entry.tree = child_it->second.tree; entry.flags = CAnchorsCacheEntry::DIRTY; cachedCoinsUsage += entry.tree.DynamicMemoryUsage(); } else { if (parent_it->second.entered != child_it->second.entered) { // The parent may have removed the entry. parent_it->second.entered = child_it->second.entered; parent_it->second.flags |= CAnchorsCacheEntry::DIRTY; } } } CAnchorsMap::iterator itOld = child_it++; mapAnchors.erase(itOld); } for (CNullifiersMap::iterator child_it = mapNullifiers.begin(); child_it != mapNullifiers.end();) { if (child_it->second.flags & CNullifiersCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization). CNullifiersMap::iterator parent_it = cacheNullifiers.find(child_it->first); if (parent_it == cacheNullifiers.end()) { CNullifiersCacheEntry& entry = cacheNullifiers[child_it->first]; entry.entered = child_it->second.entered; entry.flags = CNullifiersCacheEntry::DIRTY; } else { if (parent_it->second.entered != child_it->second.entered) { parent_it->second.entered = child_it->second.entered; parent_it->second.flags |= CNullifiersCacheEntry::DIRTY; } } } CNullifiersMap::iterator itOld = child_it++; mapNullifiers.erase(itOld); } hashAnchor = hashAnchorIn; hashBlock = hashBlockIn; return true; } bool CCoinsViewCache::Flush() { bool fOk = base->BatchWrite(cacheCoins, hashBlock, hashAnchor, cacheAnchors, cacheNullifiers); cacheCoins.clear(); cacheAnchors.clear(); cacheNullifiers.clear(); cachedCoinsUsage = 0; return fOk; } unsigned int CCoinsViewCache::GetCacheSize() const { return cacheCoins.size(); } const CTxOut &CCoinsViewCache::GetOutputFor(const CTxIn& input) const { const CCoins* coins = AccessCoins(input.prevout.hash); assert(coins && coins->IsAvailable(input.prevout.n)); return coins->vout[input.prevout.n]; } CAmount CCoinsViewCache::GetValueIn(const CTransaction& tx) const { if (tx.IsCoinBase()) return 0; CAmount nResult = 0; for (unsigned int i = 0; i < tx.vin.size(); i++) nResult += GetOutputFor(tx.vin[i]).nValue; nResult += tx.GetJoinSplitValueIn(); return nResult; } bool CCoinsViewCache::HaveJoinSplitRequirements(const CTransaction& tx) const { boost::unordered_map intermediates; BOOST_FOREACH(const JSDescription &joinsplit, tx.vjoinsplit) { BOOST_FOREACH(const uint256& nullifier, joinsplit.nullifiers) { if (GetNullifier(nullifier)) { // If the nullifier is set, this transaction // double-spends! return false; } } ZCIncrementalMerkleTree tree; auto it = intermediates.find(joinsplit.anchor); if (it != intermediates.end()) { tree = it->second; } else if (!GetAnchorAt(joinsplit.anchor, tree)) { return false; } BOOST_FOREACH(const uint256& commitment, joinsplit.commitments) { tree.append(commitment); } intermediates.insert(std::make_pair(tree.root(), tree)); } return true; } bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const { if (!tx.IsCoinBase()) { for (unsigned int i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const CCoins* coins = AccessCoins(prevout.hash); if (!coins || !coins->IsAvailable(prevout.n)) { return false; } } } return true; } double CCoinsViewCache::GetPriority(const CTransaction &tx, int nHeight) const { if (tx.IsCoinBase()) return 0.0; // Joinsplits do not reveal any information about the value or age of a note, so we // cannot apply the priority algorithm used for transparent utxos. Instead, we just // use the maximum priority whenever a transaction contains any JoinSplits. // (Note that coinbase transactions cannot contain JoinSplits.) // FIXME: this logic is partially duplicated between here and CreateNewBlock in miner.cpp. if (tx.vjoinsplit.size() > 0) { return MAX_PRIORITY; } double dResult = 0.0; BOOST_FOREACH(const CTxIn& txin, tx.vin) { const CCoins* coins = AccessCoins(txin.prevout.hash); assert(coins); if (!coins->IsAvailable(txin.prevout.n)) continue; if (coins->nHeight < nHeight) { dResult += coins->vout[txin.prevout.n].nValue * (nHeight-coins->nHeight); } } return tx.ComputePriority(dResult); } CCoinsModifier::CCoinsModifier(CCoinsViewCache& cache_, CCoinsMap::iterator it_, size_t usage) : cache(cache_), it(it_), cachedCoinUsage(usage) { assert(!cache.hasModifier); cache.hasModifier = true; } CCoinsModifier::~CCoinsModifier() { assert(cache.hasModifier); cache.hasModifier = false; it->second.coins.Cleanup(); cache.cachedCoinsUsage -= cachedCoinUsage; // Subtract the old usage if ((it->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) { cache.cacheCoins.erase(it); } else { // If the coin still exists after the modification, add the new usage cache.cachedCoinsUsage += it->second.coins.DynamicMemoryUsage(); } }