Original HUSH source code based on ZEC 1.0.8 . For historical purposes only! https://hush.is
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

390 lines
12 KiB

#include "JoinSplit.hpp"
#include "prf.h"
#include "sodium.h"
#include "zcash/util.h"
#include <memory>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <boost/optional.hpp>
#include <fstream>
#include <libsnark/common/default_types/r1cs_ppzksnark_pp.hpp>
#include <libsnark/zk_proof_systems/ppzksnark/r1cs_ppzksnark/r1cs_ppzksnark.hpp>
#include <libsnark/gadgetlib1/gadgets/hashes/sha256/sha256_gadget.hpp>
#include <libsnark/gadgetlib1/gadgets/merkle_tree/merkle_tree_check_read_gadget.hpp>
#include "tinyformat.h"
#include "sync.h"
#include "amount.h"
using namespace libsnark;
namespace libzcash {
#include "zcash/circuit/gadget.tcc"
CCriticalSection cs_ParamsIO;
CCriticalSection cs_LoadKeys;
template<typename T>
void saveToFile(const std::string path, T& obj) {
LOCK(cs_ParamsIO);
std::stringstream ss;
ss << obj;
std::ofstream fh;
fh.open(path, std::ios::binary);
ss.rdbuf()->pubseekpos(0, std::ios_base::out);
fh << ss.rdbuf();
fh.flush();
fh.close();
}
template<typename T>
void loadFromFile(const std::string path, T& objIn) {
LOCK(cs_ParamsIO);
std::stringstream ss;
std::ifstream fh(path, std::ios::binary);
if(!fh.is_open()) {
throw std::runtime_error(strprintf("could not load param file at %s", path));
}
ss << fh.rdbuf();
fh.close();
ss.rdbuf()->pubseekpos(0, std::ios_base::in);
T obj;
ss >> obj;
objIn = std::move(obj);
}
template<size_t NumInputs, size_t NumOutputs>
class JoinSplitCircuit : public JoinSplit<NumInputs, NumOutputs> {
public:
typedef default_r1cs_ppzksnark_pp ppzksnark_ppT;
typedef Fr<ppzksnark_ppT> FieldT;
r1cs_ppzksnark_verification_key<ppzksnark_ppT> vk;
r1cs_ppzksnark_processed_verification_key<ppzksnark_ppT> vk_precomp;
std::string pkPath;
JoinSplitCircuit(const std::string vkPath, const std::string pkPath) : pkPath(pkPath) {
loadFromFile(vkPath, vk);
vk_precomp = r1cs_ppzksnark_verifier_process_vk(vk);
}
~JoinSplitCircuit() {}
static void generate(const std::string r1csPath,
const std::string vkPath,
const std::string pkPath)
{
protoboard<FieldT> pb;
joinsplit_gadget<FieldT, NumInputs, NumOutputs> g(pb);
g.generate_r1cs_constraints();
auto r1cs = pb.get_constraint_system();
saveToFile(r1csPath, r1cs);
r1cs_ppzksnark_keypair<ppzksnark_ppT> keypair = r1cs_ppzksnark_generator<ppzksnark_ppT>(r1cs);
saveToFile(vkPath, keypair.vk);
saveToFile(pkPath, keypair.pk);
}
bool verify(
const ZCProof& proof,
ProofVerifier& verifier,
const uint256& pubKeyHash,
const uint256& randomSeed,
const boost::array<uint256, NumInputs>& macs,
const boost::array<uint256, NumInputs>& nullifiers,
const boost::array<uint256, NumOutputs>& commitments,
uint64_t vpub_old,
uint64_t vpub_new,
const uint256& rt
) {
try {
auto r1cs_proof = proof.to_libsnark_proof<r1cs_ppzksnark_proof<ppzksnark_ppT>>();
uint256 h_sig = this->h_sig(randomSeed, nullifiers, pubKeyHash);
auto witness = joinsplit_gadget<FieldT, NumInputs, NumOutputs>::witness_map(
rt,
h_sig,
macs,
nullifiers,
commitments,
vpub_old,
vpub_new
);
return verifier.check(
vk,
vk_precomp,
witness,
r1cs_proof
);
} catch (...) {
return false;
}
}
ZCProof prove(
const boost::array<JSInput, NumInputs>& inputs,
const boost::array<JSOutput, NumOutputs>& outputs,
boost::array<Note, NumOutputs>& out_notes,
boost::array<ZCNoteEncryption::Ciphertext, NumOutputs>& out_ciphertexts,
uint256& out_ephemeralKey,
const uint256& pubKeyHash,
uint256& out_randomSeed,
boost::array<uint256, NumInputs>& out_macs,
boost::array<uint256, NumInputs>& out_nullifiers,
boost::array<uint256, NumOutputs>& out_commitments,
uint64_t vpub_old,
uint64_t vpub_new,
const uint256& rt,
bool computeProof,
uint256 *out_esk // Payment disclosure
) {
if (vpub_old > MAX_MONEY) {
throw std::invalid_argument("nonsensical vpub_old value");
}
if (vpub_new > MAX_MONEY) {
throw std::invalid_argument("nonsensical vpub_new value");
}
uint64_t lhs_value = vpub_old;
uint64_t rhs_value = vpub_new;
for (size_t i = 0; i < NumInputs; i++) {
// Sanity checks of input
{
// If note has nonzero value
if (inputs[i].note.value != 0) {
// The witness root must equal the input root.
if (inputs[i].witness.root() != rt) {
throw std::invalid_argument("joinsplit not anchored to the correct root");
}
// The tree must witness the correct element
if (inputs[i].note.cm() != inputs[i].witness.element()) {
throw std::invalid_argument("witness of wrong element for joinsplit input");
}
}
// Ensure we have the key to this note.
if (inputs[i].note.a_pk != inputs[i].key.address().a_pk) {
throw std::invalid_argument("input note not authorized to spend with given key");
}
// Balance must be sensical
if (inputs[i].note.value > MAX_MONEY) {
throw std::invalid_argument("nonsensical input note value");
}
lhs_value += inputs[i].note.value;
if (lhs_value > MAX_MONEY) {
throw std::invalid_argument("nonsensical left hand size of joinsplit balance");
}
}
// Compute nullifier of input
out_nullifiers[i] = inputs[i].nullifier();
}
// Sample randomSeed
out_randomSeed = random_uint256();
// Compute h_sig
uint256 h_sig = this->h_sig(out_randomSeed, out_nullifiers, pubKeyHash);
// Sample phi
uint252 phi = random_uint252();
// Compute notes for outputs
for (size_t i = 0; i < NumOutputs; i++) {
// Sanity checks of output
{
if (outputs[i].value > MAX_MONEY) {
throw std::invalid_argument("nonsensical output value");
}
rhs_value += outputs[i].value;
if (rhs_value > MAX_MONEY) {
throw std::invalid_argument("nonsensical right hand side of joinsplit balance");
}
}
// Sample r
uint256 r = random_uint256();
out_notes[i] = outputs[i].note(phi, r, i, h_sig);
}
if (lhs_value != rhs_value) {
throw std::invalid_argument("invalid joinsplit balance");
}
// Compute the output commitments
for (size_t i = 0; i < NumOutputs; i++) {
out_commitments[i] = out_notes[i].cm();
}
// Encrypt the ciphertexts containing the note
// plaintexts to the recipients of the value.
{
ZCNoteEncryption encryptor(h_sig);
for (size_t i = 0; i < NumOutputs; i++) {
NotePlaintext pt(out_notes[i], outputs[i].memo);
out_ciphertexts[i] = pt.encrypt(encryptor, outputs[i].addr.pk_enc);
}
out_ephemeralKey = encryptor.get_epk();
// !!! Payment disclosure START
if (out_esk != nullptr) {
*out_esk = encryptor.get_esk();
}
// !!! Payment disclosure END
}
// Authenticate h_sig with each of the input
// spending keys, producing macs which protect
// against malleability.
for (size_t i = 0; i < NumInputs; i++) {
out_macs[i] = PRF_pk(inputs[i].key, i, h_sig);
}
if (!computeProof) {
return ZCProof();
}
protoboard<FieldT> pb;
{
joinsplit_gadget<FieldT, NumInputs, NumOutputs> g(pb);
g.generate_r1cs_constraints();
g.generate_r1cs_witness(
phi,
rt,
h_sig,
inputs,
out_notes,
vpub_old,
vpub_new
);
}
// The constraint system must be satisfied or there is an unimplemented
// or incorrect sanity check above. Or the constraint system is broken!
assert(pb.is_satisfied());
// TODO: These are copies, which is not strictly necessary.
std::vector<FieldT> primary_input = pb.primary_input();
std::vector<FieldT> aux_input = pb.auxiliary_input();
// Swap A and B if it's beneficial (less arithmetic in G2)
// In our circuit, we already know that it's beneficial
// to swap, but it takes so little time to perform this
// estimate that it doesn't matter if we check every time.
pb.constraint_system.swap_AB_if_beneficial();
std::ifstream fh(pkPath, std::ios::binary);
if(!fh.is_open()) {
throw std::runtime_error(strprintf("could not load param file at %s", pkPath));
}
return ZCProof(r1cs_ppzksnark_prover_streaming<ppzksnark_ppT>(
fh,
primary_input,
aux_input,
pb.constraint_system
));
}
};
template<size_t NumInputs, size_t NumOutputs>
void JoinSplit<NumInputs, NumOutputs>::Generate(const std::string r1csPath,
const std::string vkPath,
const std::string pkPath)
{
initialize_curve_params();
JoinSplitCircuit<NumInputs, NumOutputs>::generate(r1csPath, vkPath, pkPath);
}
template<size_t NumInputs, size_t NumOutputs>
JoinSplit<NumInputs, NumOutputs>* JoinSplit<NumInputs, NumOutputs>::Prepared(const std::string vkPath,
const std::string pkPath)
{
initialize_curve_params();
return new JoinSplitCircuit<NumInputs, NumOutputs>(vkPath, pkPath);
}
template<size_t NumInputs, size_t NumOutputs>
uint256 JoinSplit<NumInputs, NumOutputs>::h_sig(
const uint256& randomSeed,
const boost::array<uint256, NumInputs>& nullifiers,
const uint256& pubKeyHash
) {
const unsigned char personalization[crypto_generichash_blake2b_PERSONALBYTES]
= {'Z','c','a','s','h','C','o','m','p','u','t','e','h','S','i','g'};
std::vector<unsigned char> block(randomSeed.begin(), randomSeed.end());
for (size_t i = 0; i < NumInputs; i++) {
block.insert(block.end(), nullifiers[i].begin(), nullifiers[i].end());
}
block.insert(block.end(), pubKeyHash.begin(), pubKeyHash.end());
uint256 output;
if (crypto_generichash_blake2b_salt_personal(output.begin(), 32,
&block[0], block.size(),
NULL, 0, // No key.
NULL, // No salt.
personalization
) != 0)
{
throw std::logic_error("hash function failure");
}
return output;
}
Note JSOutput::note(const uint252& phi, const uint256& r, size_t i, const uint256& h_sig) const {
uint256 rho = PRF_rho(phi, i, h_sig);
return Note(addr.a_pk, value, rho, r);
}
JSOutput::JSOutput() : addr(uint256(), uint256()), value(0) {
SpendingKey a_sk = SpendingKey::random();
addr = a_sk.address();
}
JSInput::JSInput() : witness(ZCIncrementalMerkleTree().witness()),
key(SpendingKey::random()) {
note = Note(key.address().a_pk, 0, random_uint256(), random_uint256());
ZCIncrementalMerkleTree dummy_tree;
dummy_tree.append(note.cm());
witness = dummy_tree.witness();
}
template class JoinSplit<ZC_NUM_JS_INPUTS,
ZC_NUM_JS_OUTPUTS>;
}