// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Copyright (c) 2016-2024 The Hush developers // Distributed under the GPLv3 software license, see the accompanying // file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html /****************************************************************************** * Copyright © 2014-2019 The SuperNET Developers. * * * * See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at * * the top-level directory of this distribution for the individual copyright * * holder information and the developer policies on copyright and licensing. * * * * Unless otherwise agreed in a custom licensing agreement, no part of the * * SuperNET software, including this file may be copied, modified, propagated * * or distributed except according to the terms contained in the LICENSE file * * * * Removal or modification of this copyright notice is prohibited. * * * ******************************************************************************/ #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "main.h" #include "net.h" #include "init.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "primitives/transaction.h" #include "scheduler.h" #include "ui_interface.h" #include "crypto/common.h" #include "hush/utiltls.h" #include #ifdef _WIN32 #include #else #include #endif #include #include #include #include #include using namespace hush; extern int32_t HUSH_TESTNODE; // Dump addresses to peers.dat every 5 minutes (300s) // Satoshi originally used 10 seconds(!), did they know something Peter Wuille didn't? #define DUMP_ADDRESSES_INTERVAL 300 // This is every 2 blocks, on avg, on HUSH3 #define DUMP_ZINDEX_INTERVAL 150 #define CHECK_PLZ_STOP_INTERVAL 120 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef _WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization. #define FEELER_SLEEP_WINDOW 1 #define USE_TLS "encrypted as fuck" #if defined(USE_TLS) && !defined(TLS1_3_VERSION) // minimum secure protocol is 1.3 // TLS1_3_VERSION is defined in openssl/tls1.h #error "ERROR: Your WolfSSL version does not support TLS v1.3!!!" #endif using namespace std; namespace { int MAX_OUTBOUND_CONNECTIONS = GetArg("-maxoutboundconnections",64); int MAX_FEELER_CONNECTIONS = GetArg("-maxfeelerconnections",1); int MAX_INBOUND_FROMIP = GetArg("-maxinboundfromip",3); struct ListenSocket { SOCKET socket; bool allowlisted; ListenSocket(SOCKET socket, bool allowlisted) : socket(socket), allowlisted(allowlisted) {} }; } // Global state variables extern uint16_t ASSETCHAINS_P2PPORT; extern char SMART_CHAIN_SYMBOL[65]; bool fDiscover = true; bool fListen = true; uint64_t nLocalServices = NODE_NETWORK; CCriticalSection cs_mapLocalHost; map mapLocalHost; static bool vfLimited[NET_MAX] = {}; static CNode* pnodeLocalHost = NULL; uint64_t nLocalHostNonce = 0; static std::vector vhListenSocket; CAddrMan addrman; CZindexStats zstats; int nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS; bool fAddressesInitialized = false; std::string strSubVersion; TLSManager tlsmanager = TLSManager(); std::atomic fNetworkActive = { true }; bool setBannedIsDirty = false; bool GetNetworkActive() { return fNetworkActive; }; extern void StartShutdown(); /** * I2P SAM session. * Used to accept incoming and make outgoing I2P connections. */ std::unique_ptr m_i2p_sam_session; vector vNodes; CCriticalSection cs_vNodes; map mapRelay; deque > vRelayExpiration; CCriticalSection cs_mapRelay; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); static deque vOneShots; static CCriticalSection cs_vOneShots; static set setservAddNodeAddresses; static CCriticalSection cs_setservAddNodeAddresses; vector vAddedNodes; CCriticalSection cs_vAddedNodes; NodeId nLastNodeId = 0; CCriticalSection cs_nLastNodeId; static CSemaphore *semOutbound = NULL; static boost::condition_variable messageHandlerCondition; // Denial-of-service detection/prevention // Key is IP address, value is banned-until-time banmap_t setBanned; CCriticalSection cs_setBanned; // Signals for message handling static CNodeSignals g_signals; CNodeSignals& GetNodeSignals() { return g_signals; } // WolfSSL server and client contexts WOLFSSL_CTX *tls_ctx_server, *tls_ctx_client; static bool operator==(_NODE_ADDR a, _NODE_ADDR b) { return (a.ipAddr == b.ipAddr); } void AddOneShot(const std::string& strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { //printf("Listenport.%u\n",Params().GetDefaultPort()); return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (map::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) { int nScore = (*it).second.nScore; int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService((*it).first, (*it).second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the serialized seeds into usable address objects. static std::vector ConvertSeeds(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. // Seed nodes are given a random 'last seen time' of between one and two // weeks ago. const int64_t nOneWeek = 7*24*60*60; std::vector vSeedsOut; CDataStream s(vSeedsIn, SER_NETWORK, PROTOCOL_VERSION | ADDRV2_FORMAT); while (!s.eof()) { CService endpoint; s >> endpoint; CAddress addr{endpoint, NODE_NETWORK}; addr.nTime = GetTime() - nOneWeek; LogPrint("net", "Added hardcoded seed: %s\n", addr.ToString()); vSeedsOut.push_back(addr); } return vSeedsOut; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer) { CAddress ret(CService(CNetAddr(),GetListenPort()),0); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr); } ret.nServices = nLocalServices; ret.nTime = GetTime(); return ret; } int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() && IsReachable(pnode->addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertizeLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr); // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->addrLocal); } if (addrLocal.IsRoutable()) { LogPrintf("AdvertizeLocal: advertizing address %s\n", addrLocal.ToString()); pnode->PushAddress(addrLocal); } } } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (!IsReachable(addr)) return false; //Add our local addresses to addrman to distribute to other nodes addrman.Add(CAddress(addr), addr); addrman.Connected(addr); addrman.SetLocal(addr); LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } bool RemoveLocal(const CService& addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); return true; } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } void SetReachable(enum Network net, bool reachable) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) return; LOCK(cs_mapLocalHost); vfLimited[net] = !reachable; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } void AddressCurrentlyConnected(const CService& addr) { addrman.Add(CAddress(addr),addr); //Add address if not alread in addrman (picks up addnodes) addrman.Connected(addr); } CNode::eTlsOption CNode::tlsFallbackNonTls = CNode::eTlsOption::FALLBACK_FALSE; CNode::eTlsOption CNode::tlsValidate = CNode::eTlsOption::FALLBACK_UNSET; uint64_t CNode::nTotalBytesRecv = 0; uint64_t CNode::nTotalBytesSent = 0; CCriticalSection CNode::cs_totalBytesRecv; CCriticalSection CNode::cs_totalBytesSent; CNode* FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode* FindNode(const CSubNet& subNet) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode* FindNode(const std::string& addrName) { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (pnode->addrName == addrName) { return pnode; } } return nullptr; } CNode* FindNode(const CService& addr) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CService)pnode->addr == addr) return (pnode); return NULL; } static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind); } else { LogPrintf("Warning: getsockname failed\n"); } } return addr_bind; } CNode* ConnectNode(CAddress addrConnect, const char *pszDest) { if (pszDest == NULL) { if (IsLocal(addrConnect)) return NULL; // Look for an existing connection CNode* pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->AddRef(); return pnode; } } LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetTime() - addrConnect.nTime)/3600.0); // Connect SOCKET hSocket; bool proxyConnectionFailed = false; bool connected = false; std::unique_ptr sock; if (!addrConnect.IsValid()) { return NULL; } if (!IsReachable(addrConnect)) { return NULL; } if (addrConnect.GetNetwork() == NET_I2P && m_i2p_sam_session.get() != nullptr) { i2p::Connection conn; if (m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed)) { connected = true; sock = std::move(conn.sock); hSocket = sock->Release(); // addr_bind = CAddress{conn.me, NODE_NONE}; } } else if (pszDest) { connected = ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed); } else { connected = ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed); } if (connected) { if (!IsSelectableSocket(hSocket)) { LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n"); CloseSocket(hSocket); return NULL; } addrman.Attempt(addrConnect); WOLFSSL *ssl = NULL; /* TCP connection is ready. Do client side SSL. */ unsigned long err_code = 0; ssl = tlsmanager.connect(hSocket, addrConnect, err_code); if(!ssl) { LogPrint("tls", "%s():%d - err_code %x, connection to %s failed)\n", __func__, __LINE__, err_code, addrConnect.ToStringIP()); CloseSocket(hSocket); return NULL; } // Add node CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false, ssl); pnode->tls_cipher = wolfSSL_get_cipher_name(ssl); pnode->AddRef(); { LOCK(cs_vNodes); vNodes.push_back(pnode); } pnode->nTimeConnected = GetTime(); return pnode; } else if (!proxyConnectionFailed) { // If connecting to the node failed, and failure is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect); } return NULL; } void CNode::CloseSocketDisconnect() { fDisconnect = true; { LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { try { LogPrint("net", "disconnecting peer=%d\n", id); } catch(std::bad_alloc&) { // when the node is shutting down, the call above might use invalid memory resulting in a // std::bad_alloc exception when instantiating internal objs for handling log category LogPrintf("(node is probably shutting down) disconnecting peer=%d\n", id); } if (ssl) { unsigned long err_code = 0; tlsmanager.waitFor(SSL_SHUTDOWN, hSocket, ssl, (DEFAULT_CONNECT_TIMEOUT / 1000), err_code); wolfSSL_free(ssl); ssl = NULL; } CloseSocket(hSocket); } } { LOCK(cs_addrKnown); addrKnown.reset(); } // in case this fails, we'll empty the recv buffer when the CNode is deleted TRY_LOCK(cs_vRecvMsg, lockRecv); if (lockRecv) vRecvMsg.clear(); } extern int32_t HUSH_NSPV; #ifndef HUSH_NSPV_FULLNODE #define HUSH_NSPV_FULLNODE (HUSH_NSPV <= 0) #endif // !HUSH_NSPV_FULLNODE #ifndef HUSH_NSPV_SUPERLITE #define HUSH_NSPV_SUPERLITE (HUSH_NSPV > 0) #endif // !HUSH_NSPV_SUPERLITE void CNode::PushVersion() { int nBestHeight = g_signals.GetHeight().get_value_or(0); int64_t nTime = (fInbound ? GetTime() : GetTime()); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices)); CAddress addrMe = GetLocalAddress(&addr); GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce)); if (fLogIPs) LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id); else LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id); PushMessage(NetMsgType::VERSION, PROTOCOL_VERSION, nLocalServices, nTime, addrYou, addrMe, nLocalHostNonce, strSubVersion, nBestHeight, true); } void DumpBanlist() { SweepBanned(); // clean unused entries (if bantime has expired) if (!BannedSetIsDirty()) return; int64_t nStart = GetTimeMillis(); CBanDB bandb; banmap_t banmap; GetBanned(banmap); if (bandb.Write(banmap)) { SetBannedSetDirty(false); } fprintf(stderr,"%s: Dumping banlist with %lu items\n", __func__, banmap.size()); LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } DumpBanlist(); //store banlist to disk } bool CNode::IsBanned(CNetAddr ip) { bool fResult = false; { LOCK(cs_setBanned); for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil) { fprintf(stderr,"%s: found banned subnet %s\n", __func__, subNet.ToString().c_str()); fResult = true; } } } return fResult; } bool CNode::IsBanned(CSubNet subnet) { bool fResult = false; { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) fResult = true; } } return fResult; } void CNode::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CNode::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()+GetArg("-bantime", 60*60*24)); // Default 24-hour ban if (bantimeoffset > 0) banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; fprintf(stderr, "%s: banning %s until %ld with bantimeoffset=%ld sinceUnixEpoch=%d\n", __func__, subNet.ToString().c_str(), banEntry.nBanUntil, bantimeoffset, sinceUnixEpoch); { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else { return; } } { LOCK(cs_vNodes); for (CNode* pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) fprintf(stderr, "%s: disconnecting from banned node %s\n", __func__, pnode->addr.ToString().c_str() ); pnode->fDisconnect = true; } } if(banReason == BanReasonManuallyAdded) { fprintf(stderr,"%s: dumping banlist after manual ban\n", __func__); DumpBanlist(); //store banlist to disk immediately if user requested ban } } bool CNode::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CNode::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) return false; setBannedIsDirty = true; } DumpBanlist(); //store banlist to disk immediately return true; } void GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); // Sweep the banlist so expired bans are not returned SweepBanned(); banMap = setBanned; //create a thread safe copy } void SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void SweepBanned() { int64_t now = GetTime(); //fprintf(stderr,"%s: Sweeping banlist\n", __func__); LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while(it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if(now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else { ++it; } } } bool BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void SetBannedSetDirty(bool dirty) { LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag setBannedIsDirty = dirty; } std::vector CNode::vAllowlistedRange; CCriticalSection CNode::cs_vAllowlistedRange; bool CNode::IsAllowlistedRange(const CNetAddr &addr) { LOCK(cs_vAllowlistedRange); BOOST_FOREACH(const CSubNet& subnet, vAllowlistedRange) { if (subnet.Match(addr)) return true; } return false; } void CNode::AddAllowlistedRange(const CSubNet &subnet) { LOCK(cs_vAllowlistedRange); vAllowlistedRange.push_back(subnet); } void CNode::copyStats(CNodeStats &stats, const std::vector &m_asmap) { stats.nodeid = this->GetId(); stats.nServices = nServices; stats.addr = addr; // stats.addrBind = addrBind; stats.m_mapped_as = addr.GetMappedAS(m_asmap); stats.nLastSend = nLastSend; stats.nLastRecv = nLastRecv; stats.nTimeConnected = nTimeConnected; stats.nTimeOffset = nTimeOffset; stats.addrName = addrName; stats.nVersion = nVersion; stats.cleanSubVer = cleanSubVer; stats.fInbound = fInbound; stats.nStartingHeight = nStartingHeight; stats.nSendBytes = nSendBytes; stats.nRecvBytes = nRecvBytes; stats.fAllowlisted = fAllowlisted; stats.tls_cipher = tls_cipher; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Hush users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dMinPing = (((double)nMinPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); stats.m_addr_processed = m_addr_processed.load(); stats.m_addr_rate_limited = m_addr_rate_limited.load(); // Leave string empty if addrLocal invalid (not filled in yet) stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : ""; // If ssl != NULL it means TLS connection was established successfully { LOCK(cs_hSocket); stats.fTLSEstablished = (ssl != NULL) && (wolfSSL_is_init_finished(ssl) == 1); } stats.m_wants_addrv2 = m_wants_addrv2; } // requires LOCK(cs_vRecvMsg) bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes) { while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { msg.nTime = GetTimeMicros(); messageHandlerCondition.notify_one(); } } return true; } void V1TransportSerializer::prepareForTransport(CSerializedNetMsg& msg, std::vector& header) { // create dbl-sha256 checksum uint256 hash = Hash(msg.data.begin(), msg.data.end()); // create header CMessageHeader hdr(Params().MessageStart(), msg.m_type.c_str(), msg.data.size()); // memcpy(hdr.nChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); memcpy(&hdr.nChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); // serialize header header.reserve(CMessageHeader::HEADER_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr}; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } // requires LOCK(cs_vSend) void SocketSendData(CNode *pnode) { std::deque::iterator it = pnode->vSendMsg.begin(); while (it != pnode->vSendMsg.end()) { const CSerializeData &data = *it; assert(data.size() > pnode->nSendOffset); bool bIsSSL = false; int nBytes = 0, nRet = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { LogPrint("net", "Send: connection with %s is already closed\n", pnode->addr.ToString()); break; } bIsSSL = (pnode->ssl != NULL); if (bIsSSL) { wolfSSL_ERR_clear_error(); // clear the error queue, otherwise we may be reading an old error that occurred previously in the current thread nBytes = wolfSSL_write(pnode->ssl, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset); nRet = wolfSSL_get_error(pnode->ssl, nBytes); } else { nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); nRet = WSAGetLastError(); } } if (nBytes > 0) { pnode->nLastSend = GetTime(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; pnode->RecordBytesSent(nBytes); if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes <= 0) { // error if (bIsSSL) { if (nRet != WOLFSSL_ERROR_WANT_READ && nRet != WOLFSSL_ERROR_WANT_WRITE) { LogPrintf("ERROR: SSL_write %s; closing connection\n", wolfSSL_ERR_error_string(nRet, NULL)); pnode->CloseSocketDisconnect(); } else { // preventive measure from exhausting CPU usage MilliSleep(1); // 1 msec } } else { if (nRet != WSAEWOULDBLOCK && nRet != WSAEMSGSIZE && nRet != WSAEINTR && nRet != WSAEINPROGRESS) { LogPrintf("ERROR: send %s; closing connection\n", NetworkErrorString(nRet)); pnode->CloseSocketDisconnect(); } } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); } static list vNodesDisconnected; class CNodeRef { public: CNodeRef(CNode *pnode) : _pnode(pnode) { LOCK(cs_vNodes); _pnode->AddRef(); } ~CNodeRef() { LOCK(cs_vNodes); _pnode->Release(); } CNode& operator *() const {return *_pnode;}; CNode* operator ->() const {return _pnode;}; CNodeRef& operator =(const CNodeRef& other) { if (this != &other) { LOCK(cs_vNodes); _pnode->Release(); _pnode = other._pnode; _pnode->AddRef(); } return *this; } CNodeRef(const CNodeRef& other): _pnode(other._pnode) { LOCK(cs_vNodes); _pnode->AddRef(); } private: CNode *_pnode; }; static bool ReverseCompareNodeMinPingTime(const CNodeRef &a, const CNodeRef &b) { return a->nMinPingUsecTime > b->nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const CNodeRef &a, const CNodeRef &b) { return a->nTimeConnected > b->nTimeConnected; } class CompareNetGroupKeyed { std::vector vchSecretKey; public: CompareNetGroupKeyed() { vchSecretKey.resize(32, 0); GetRandBytes(vchSecretKey.data(), vchSecretKey.size()); } bool operator()(const CNodeRef &a, const CNodeRef &b) { std::vector vchGroupA, vchGroupB; CSHA256 hashA, hashB; std::vector vchA(32), vchB(32); vchGroupA = a->addr.GetGroup(addrman.m_asmap); vchGroupB = b->addr.GetGroup(addrman.m_asmap); hashA.Write(begin_ptr(vchGroupA), vchGroupA.size()); hashB.Write(begin_ptr(vchGroupB), vchGroupB.size()); hashA.Write(begin_ptr(vchSecretKey), vchSecretKey.size()); hashB.Write(begin_ptr(vchSecretKey), vchSecretKey.size()); hashA.Finalize(begin_ptr(vchA)); hashB.Finalize(begin_ptr(vchB)); return vchA < vchB; } }; static bool AttemptToEvictConnection(bool fPreferNewConnection) { std::vector vEvictionCandidates; { LOCK(cs_vNodes); BOOST_FOREACH(CNode *node, vNodes) { if (node->fAllowlisted) continue; if (!node->fInbound) continue; if (node->fDisconnect) continue; vEvictionCandidates.push_back(CNodeRef(node)); } } if (vEvictionCandidates.empty()) return false; // Protect connections with certain characteristics // Check version of eviction candidates and prioritize nodes which do not support network upgrade. std::vector vTmpEvictionCandidates; int height; { LOCK(cs_main); height = chainActive.Height(); } const Consensus::Params& params = Params().GetConsensus(); auto nextEpoch = NextEpoch(height, params); if (nextEpoch) { auto idx = nextEpoch.get(); int nActivationHeight = params.vUpgrades[idx].nActivationHeight; if (nActivationHeight > 0 && height < nActivationHeight && height >= nActivationHeight - NETWORK_UPGRADE_PEER_PREFERENCE_BLOCK_PERIOD) { // Find any nodes which don't support the protocol version for the next upgrade for (const CNodeRef &node : vEvictionCandidates) { if (node->nVersion < params.vUpgrades[idx].nProtocolVersion) { vTmpEvictionCandidates.push_back(node); } } // Prioritize these nodes by replacing eviction set with them if (vTmpEvictionCandidates.size() > 0) { vEvictionCandidates = vTmpEvictionCandidates; } } } // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected. static CompareNetGroupKeyed comparerNetGroupKeyed; std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), comparerNetGroupKeyed); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the 8 nodes with the best ping times. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the half of the remaining nodes which have been connected the longest. // This replicates the existing implicit behavior. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected); vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast(vEvictionCandidates.size() / 2), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) std::vector naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map, std::vector > mapAddrCounts; BOOST_FOREACH(const CNodeRef &node, vEvictionCandidates) { mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)].push_back(node); int64_t grouptime = mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)][0]->nTimeConnected; size_t groupsize = mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)].size(); if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = groupsize; nMostConnectionsTime = grouptime; naMostConnections = node->addr.GetGroup(addrman.m_asmap); } } // Reduce to the network group with the most connections vEvictionCandidates = mapAddrCounts[naMostConnections]; // Do not disconnect peers if there is only one unprotected connection from their network group. if (vEvictionCandidates.size() <= 1) // unless we prefer the new connection (for allowlisted peers) if (!fPreferNewConnection) return false; // Disconnect from the network group with the most connections vEvictionCandidates[0]->fDisconnect = true; return true; } static void AcceptConnection(const ListenSocket& hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; if (hSocket == INVALID_SOCKET) { const int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) { LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } return; } if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } const CAddress addr_bind = GetBindAddress(hSocket); bool allowlisted = hListenSocket.allowlisted || CNode::IsAllowlistedRange(addr); CreateNodeFromAcceptedSocket(hSocket, allowlisted, addr_bind, addr); } void CreateNodeFromAcceptedSocket(SOCKET hSocket, bool allowlisted, const CAddress& addr_bind, const CAddress& addr) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); // SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); // CAddress addr; int nInboundThisIP = 0; int nInbound = 0; int nMaxInbound = nMaxConnections - (MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS); { LOCK(cs_vNodes); struct sockaddr_storage tmpsockaddr; socklen_t tmplen = sizeof(sockaddr); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->fInbound) { nInbound++; if (pnode->addr.GetSockAddr((struct sockaddr*)&tmpsockaddr, &tmplen) && (tmplen == len) && (memcmp(&sockaddr, &tmpsockaddr, tmplen) == 0)) nInboundThisIP++; } } } if (!fNetworkActive) { LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } if (CNode::IsBanned(addr) && !allowlisted) { LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsReachable(addr)) { CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection(allowlisted)) { // No connection to evict, disconnect the new connection LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n"); CloseSocket(hSocket); return; } } if (nInboundThisIP >= MAX_INBOUND_FROMIP) { // No connection to evict, disconnect the new connection LogPrint("net", "too many connections from %s, connection refused\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted sockets // on all platforms. Set it again here just to be sure. int set = 1; #ifdef _WIN32 setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); #else setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); #endif WOLFSSL *ssl = NULL; SetSocketNonBlocking(hSocket, true); /* TCP connection is ready. Do server side TLS */ unsigned long err_code = 0; ssl = tlsmanager.accept( hSocket, addr, err_code); if(!ssl) { LogPrint("tls", "TLS: %s():%d - err_code %x, failure accepting connection from %s\n", __func__, __LINE__, err_code, addr.ToStringIP()); CloseSocket(hSocket); return; } CNode* pnode = new CNode(hSocket, addr, "", true, ssl); pnode->AddRef(); pnode->fAllowlisted = allowlisted; pnode->tls_cipher = wolfSSL_get_cipher_name(ssl); LogPrint("net", "connection from %s accepted using cipher %s\n", addr.ToString(), pnode->tls_cipher); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (true) { // Disconnect nodes { LOCK(cs_vNodes); // Disconnect unused nodes vector vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect || (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty())) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released if (pnode->fNetworkNode || pnode->fInbound) pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes list vNodesDisconnectedCopy = vNodesDisconnected; BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); delete pnode; } } } } if(vNodes.size() != nPrevNodeCount) { nPrevNodeCount = vNodes.size(); uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount); } // Find which sockets have data to receive struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = max(hSocketMax, pnode->hSocket); have_fds = true; // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signaling. // * Otherwise, if there is no (complete) message in the receive buffer, // or there is space left in the buffer, select() for receiving data. // * (if neither of the above applies, there is certainly one message // in the receiver buffer ready to be processed). // Together, that means that at least one of the following is always possible, // so we don't deadlock: // * We send some data. // * We wait for data to be received (and disconnect after timeout). // * We process a message in the buffer (message handler thread). { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend && !pnode->vSendMsg.empty()) { FD_SET(pnode->hSocket, &fdsetSend); continue; } } { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv && ( pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() || pnode->GetTotalRecvSize() <= ReceiveFloodSize())) FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); boost::this_thread::interruption_point(); if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); MilliSleep(timeout.tv_usec/1000); } // Accept new connections BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // Service each socket vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->AddRef(); } BOOST_FOREACH(CNode* pnode, vNodesCopy) { boost::this_thread::interruption_point(); if (tlsmanager.threadSocketHandler(pnode,fdsetRecv,fdsetSend,fdsetError)==-1){ continue; } // Inactivity checking int64_t nTime = GetTime(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingRetry > MAX_PING_RETRY) { LogPrintf("ping max retry exceeded, disconnecting node %i\n", pnode->id); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } } } void ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute if ((addrman.size() > 0) && (!GetBoolArg("-forcednsseed", false))) { MilliSleep(11 * 1000); LOCK(cs_vNodes); if (vNodes.size() >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { vector vIPs; vector vAdd; if (LookupHost(seed.host.c_str(), vIPs, 256, true)) { BOOST_FOREACH(const CNetAddr& ip, vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, ASSETCHAINS_P2PPORT)); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); } } // TODO: The seed name resolve may fail, yielding an IP of [::], which results in // addrman assigning the same source to results from different seeds. // This should switch to a hard-coded stable dummy IP for each seed name, so that the // resolve is not required at all. if (!vIPs.empty()) { CService seedSource; Lookup(seed.name.c_str(), seedSource, 0, true); addrman.Add(vAdd, seedSource); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void DumpZindexStats() { int64_t nStart = GetTimeMillis(); CZindexDB zdb; zdb.Write(zstats); LogPrintf("Flushed stats at height %li to zindex.dat %dms\n", zstats.Height(), GetTimeMillis() - nStart); } void CheckIfWeShouldStop() { // If the RPC interface is "stuck", such as filling up with deadlocks // and cannot process any more requests, the only option was to kill the full node. // This is a disk-based method where a node can realize it should stop, and which // can help avoid extremely long rescans if(boost::filesystem::exists(GetDataDir() / "plz_stop")) { LogPrintf("%s: Found plz_stop file, shutting down...\n", __func__); StartShutdown(); } } void static ProcessOneShot() { string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { if (!OpenNetworkConnection(addr, &grant, strDest.c_str(), true)) AddOneShot(strDest); } } int64_t PoissonNextSend(int64_t now, int average_interval_seconds) { return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } void ThreadOpenConnections() { // Connect to specific addresses if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"]) { CAddress addr; OpenNetworkConnection(addr, NULL, strAddr.c_str()); for (int i = 0; i < 10 && i < nLoop; i++) { MilliSleep(500); } } MilliSleep(500); } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL); while (true) { ProcessOneShot(); MilliSleep(500); CSemaphoreGrant grant(*semOutbound); boost::this_thread::interruption_point(); // Add seed nodes if DNS seeds are all down (an infrastructure attack?). // if (addrman.size() == 0 && (GetTime() - nStart > 60)) { if (GetTime() - nStart > 60) { static bool done = false; if (!done) { std::vector vFixedSeeds = ConvertSeeds(Params().FixedSeeds()); LogPrintf("Adding %d fixed seed nodes.\n", vFixedSeeds.size()); BOOST_FOREACH(CAddress fixedSeed, vFixedSeeds) { std::vector vFixedSeed; vFixedSeed.push_back(fixedSeed); CService seedSource; Lookup(fixedSeed.ToString().c_str(), seedSource, Params().GetDefaultPort(), false); addrman.Add(vFixedSeed, seedSource); } done = true; LogPrintf("Done adding fixed seed nodes.\n"); } } // Choose an address to connect to based on most recently seen CAddress addrConnect; // Only connect out to one peer per network group. Originally /16 for IPv4, now ASNs via // -asmap for ASN bucketing, which is enabled by default // Do this here so we don't have to critsect vNodes inside mapAddresses critsect. int nOutbound = 0; set > setConnected; { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fInbound) { setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap)); nOutbound++; } } } LogPrint("net", "Creating %d outbound connections\n", nOutbound); assert(nOutbound <= (MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS)); // "Feeler Connections" as per https://eprint.iacr.org/2015/263.pdf // "Eclipse Attacks on Bitcoin’s Peer-to-Peer Network" by // Ethan Heilman, Alison Kendler, Aviv Zohar, Sharon Goldberg. // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if we can connect // successfully it is added to tried. // * Start attempting feeler connections only after node finishes making outbound // connections. // * Make feeler connections randomly with 120s average interval via PoissonNextSend. // Originally from https://github.com/bitcoin/bitcoin/pull/8282 // Modified for API changes by Duke Leto bool fFeeler = false; if (nOutbound >= MAX_OUTBOUND_CONNECTIONS) { int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds). if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } int64_t nNow = GetTime(); int nTries = 0; LogPrint("net", "Resolving addrman collisions\n"); addrman.ResolveCollisions(); while (true) { if (ShutdownRequested()) break; LogPrint("net", "%s: addrman loop nTries=%d\n", __func__, nTries); CAddrInfo addr = addrman.SelectTriedCollision(); // SelectTriedCollision returns an invalid address if it is empty. if (!fFeeler || !addr.IsValid()) { addr = addrman.Select(fFeeler); } // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup(addrman.m_asmap)) || IsLocal(addr)) { LogPrint("net", "%s: addrman loop address is not valid, or ASN exists or is local, nTries=%d\n", __func__, nTries); break; } // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) { LogPrint("net", "%s: addrman loop too many tries, nTries=%d\n", __func__, nTries); break; } if (!IsReachable(addr)) { LogPrint("net", "%s: addrman loop not reachable, nTries=%d\n", __func__, nTries); continue; } // only consider very recently tried nodes after 30 failed attempts if (nNow - addr.nLastTry < 600 && nTries < 30) continue; /* TODO: port this code // only consider nodes missing relevant services after 40 failed attempts if ((addr.nServices & nRelevantServices) != nRelevantServices && nTries < 40) continue; */ //TODO: why is this a good thing? // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) { LogPrint("net", "%s: addrman loop not default port, nTries=%d\n", __func__, nTries); continue; } addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid synchronization int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); MilliSleep(randsleep); LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString().c_str()); printf("%s: Making feeler connection to %s\n", __func__, addrConnect.ToString().c_str()); } //int failures = setConnected.size() >= std::min(nMaxConnections - 1, 2); OpenNetworkConnection(addrConnect,/*failures,*/ &grant, NULL, false, fFeeler); } } } void ThreadOpenAddedConnections() { { LOCK(cs_vAddedNodes); vAddedNodes = mapMultiArgs["-addnode"]; } if (HaveNameProxy()) { while(true) { list lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } BOOST_FOREACH(const std::string& strAddNode, lAddresses) { CAddress addr; CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(addr, &grant, strAddNode.c_str()); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } for (unsigned int i = 0; true; i++) { list lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } list > lservAddressesToAdd(0); BOOST_FOREACH(const std::string& strAddNode, lAddresses) { vector vservNode(0); if(Lookup(strAddNode.c_str(), vservNode, Params().GetDefaultPort(), fNameLookup, 0)) { lservAddressesToAdd.push_back(vservNode); { LOCK(cs_setservAddNodeAddresses); BOOST_FOREACH(const CService& serv, vservNode) setservAddNodeAddresses.insert(serv); } } } // Attempt to connect to each IP for each addnode entry until at least one is successful per addnode entry // (keeping in mind that addnode entries can have many IPs if fNameLookup) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) for (list >::iterator it = lservAddressesToAdd.begin(); it != lservAddressesToAdd.end(); it++) { BOOST_FOREACH(const CService& addrNode, *(it)) if (pnode->addr == addrNode) { it = lservAddressesToAdd.erase(it); if ( it != lservAddressesToAdd.begin() ) it--; break; } if (it == lservAddressesToAdd.end()) break; } } BOOST_FOREACH(vector& vserv, lservAddressesToAdd) { CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(CAddress(vserv[i % vserv.size()]), &grant); MilliSleep(500); } MilliSleep(120000); } } // if successful, this moves the passed grant to the constructed node bool OpenNetworkConnection(const CAddress& addrConnect, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler) { LogPrint("net", "%s: %s feeler=%d oneshot=%d\n", __func__, addrConnect.ToString(), fFeeler, fOneShot); // Initiate outbound network connection boost::this_thread::interruption_point(); if (!fNetworkActive) { return false; } if (!IsReachable(addrConnect)) { return false; } if (!pszDest) { if (IsLocal(addrConnect) || FindNode(static_cast(addrConnect)) || CNode::IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return false; } else if (FindNode(std::string(pszDest))) return false; LogPrint("net", "%s: ConnectNode(%s)\n", __func__, addrConnect.ToString()); CNode* pnode = ConnectNode(addrConnect, pszDest); boost::this_thread::interruption_point(); if (!pnode) { LogPrint("net", "%s: ConnectNode(%s) FAILED\n", __func__, addrConnect.ToString()); return false; } if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); pnode->fNetworkNode = true; if (fOneShot) pnode->fOneShot = true; if (fFeeler) pnode->fFeeler = true; return true; } void ThreadMessageHandler() { boost::mutex condition_mutex; boost::unique_lock lock(condition_mutex); SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL); while (true) { vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { pnode->AddRef(); } } // Poll the connected nodes for messages CNode* pnodeTrickle = NULL; if (!vNodesCopy.empty()) pnodeTrickle = vNodesCopy[GetRand(vNodesCopy.size())]; bool fSleep = true; // Randomize the order in which we process messages from/to our peers. // This prevents attacks in which an attacker exploits having multiple // consecutive connections in the vNodes list. random_shuffle(vNodesCopy.begin(), vNodesCopy.end(), GetRandInt); BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { if (!g_signals.ProcessMessages(pnode)) pnode->CloseSocketDisconnect(); if (pnode->nSendSize < SendBufferSize()) { if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete())) { fSleep = false; } } } } boost::this_thread::interruption_point(); // Send messages { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) g_signals.SendMessages(pnode, pnode == pnodeTrickle || pnode->fAllowlisted); } boost::this_thread::interruption_point(); } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } if (fSleep) messageHandlerCondition.timed_wait(lock, boost::posix_time::microsec_clock::universal_time() + boost::posix_time::milliseconds(100)); } } void ThreadI2PCheck() { const int64_t wait_time = 5000; const int64_t err_wait_cap = wait_time * 60; auto err_wait = wait_time; bool advertising_listen_addr = false; i2p::Connection conn; while (true) { MilliSleep(wait_time); boost::this_thread::interruption_point(); if (!m_i2p_sam_session->Check()) { MilliSleep(err_wait); if (err_wait < err_wait_cap) { err_wait *= 2; } } else { err_wait = wait_time; } } } void ThreadI2PAcceptIncoming() { const int64_t err_wait_begin = 1000; const int64_t err_wait_cap = 1000 * 60 * 5; auto err_wait = err_wait_begin; bool advertising_listen_addr = false; i2p::Connection conn; while (true) { boost::this_thread::interruption_point(); if (!m_i2p_sam_session->Listen(conn)) { if (advertising_listen_addr && conn.me.IsValid()) { RemoveLocal(conn.me); advertising_listen_addr = false; } MilliSleep(err_wait); if (err_wait < err_wait_cap) { err_wait *= 2; } continue; } if (!advertising_listen_addr) { AddLocal(conn.me, LOCAL_MANUAL); advertising_listen_addr = true; } if (!m_i2p_sam_session->Accept(conn)) { continue; } CreateNodeFromAcceptedSocket(conn.sock->Release(), false, CAddress{conn.me, NODE_NETWORK}, CAddress{conn.peer, NODE_NETWORK}); } } bool BindListenPort(const CService &addrBind, string& strError, bool fAllowlisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } if (!IsSelectableSocket(hListenSocket)) { strError = "Error: Couldn't create a listenable socket for incoming connections"; LogPrintf("%s\n", strError); return false; } #ifndef _WIN32 #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); #endif // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); // Disable Nagle's algorithm setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int)); setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int)); #endif // Set to non-blocking, incoming connections will also inherit this // // WARNING! // On Linux, the new socket returned by accept() does not inherit file // status flags such as O_NONBLOCK and O_ASYNC from the listening // socket. http://man7.org/linux/man-pages/man2/accept.2.html if (!SetSocketNonBlocking(hListenSocket, true)) { strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY #ifdef _WIN32 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); #endif #endif #ifdef _WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. Full node is probably already running."), addrBind.ToString()); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fAllowlisted)); if (addrBind.IsRoutable() && fDiscover && !fAllowlisted) AddLocal(addrBind, LOCAL_BIND); return true; } void static Discover(boost::thread_group& threadGroup) { if (!fDiscover) return; #ifdef _WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { vector vaddr; if (LookupHost(pszHostName, vaddr, 0, false)) { BOOST_FOREACH (const CNetAddr &addr, vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } void LoadPeers() { uiInterface.InitMessage(_("Loading addresses...")); // Load addresses for peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (!adb.Read(addrman)) { addrman.Clear(); LogPrintf("Invalid or missing peers.dat; recreating\n"); } } LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); fAddressesInitialized = true; } //extern CWallet pwalletMain; void StartNode(boost::thread_group& threadGroup, CScheduler& scheduler) { CheckIfWeShouldStop(); if (GetBoolArg("-nspv_msg", DEFAULT_NSPV_PROCESSING)) { nLocalServices |= NODE_NSPV; LogPrintf("NSPV messages processing enabled\n"); } proxyType i2p_sam; if (GetProxy(NET_I2P, i2p_sam)) { m_i2p_sam_session = std::unique_ptr(new i2p::sam::Session(GetDataDir() / "i2p_private_key", i2p_sam.proxy)); } if (fZindex) { uiInterface.InitMessage(_("Loading zindex stats...")); int64_t nStart = GetTimeMillis(); { CZindexDB zdb; if (!zdb.Read(zstats)) { // The first time nodes use zindex.dat code, no file will be found // TODO: rescan if invalid only LogPrintf("Invalid or missing zindex.dat! Generating new...\n"); //bool update = true; //pwalletMain->ScanForWalletTransactions(chainActive.Genesis(),update); // We assume this is the first startup with zindex.dat code, and serialize current data to disk. DumpZindexStats(); // Now read-in the stats we just wrote to disk to memory if(!zdb.Read(zstats)) { LogPrintf("Invalid or missing zindex.dat! Stats may be corrupt\n"); } else { LogPrintf("Loaded stats at height %li from zindex.dat %dms\n", zstats.Height(), GetTimeMillis() - nStart); } } else { LogPrintf("Loaded stats at height %li from zindex.dat %dms\n", zstats.Height(), GetTimeMillis() - nStart); } } } uiInterface.InitMessage(_("Loading addresses...")); int64_t nStart = GetTimeMillis(); fprintf(stderr, "%s: Loading addresses for peers.dat at %ld\n", __func__, nStart); { CAddrDB adb; if (!adb.Read(addrman)) LogPrintf("Invalid or missing peers.dat! This can happen when upgrading. Whatevz, recreating\n"); } LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); fAddressesInitialized = true; if (semOutbound == NULL) { // initialize semaphore int nMaxOutbound = min((MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS), nMaxConnections); semOutbound = new CSemaphore(nMaxOutbound); } if (pnodeLocalHost == NULL) { CNetAddr local; LookupHost("127.0.0.1", local, false); pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService(local, 0), nLocalServices)); } Discover(threadGroup); #ifdef USE_TLS if (!tlsmanager.prepareCredentials()) { LogPrintf("TLS: ERROR: %s: %s: Credentials weren't generated. Node can't be started.\n", __FILE__, __func__); return; } if (!tlsmanager.initialize()) { LogPrintf("TLS: ERROR: %s: %s: TLS initialization failed. Node can't be started.\n", __FILE__, __func__); return; } #else return; #endif // Start threads if (!GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadGroup.create_thread(boost::bind(&TraceThread, "dnsseed", &ThreadDNSAddressSeed)); // Send and receive from sockets, accept connections threadGroup.create_thread(boost::bind(&TraceThread, "net", &ThreadSocketHandler)); //Listen for I2P connections, or periodically check the i2p control port. if (m_i2p_sam_session.get() != nullptr) { if (GetBoolArg("-i2pacceptincoming", true) ) { threadGroup.create_thread(boost::bind(&TraceThread, "i2paccept", &ThreadI2PAcceptIncoming)); } else { threadGroup.create_thread(boost::bind(&TraceThread, "i2pcheck", &ThreadI2PCheck)); } } // Initiate outbound connections from -addnode threadGroup.create_thread(boost::bind(&TraceThread, "addcon", &ThreadOpenAddedConnections)); // Initiate outbound connections threadGroup.create_thread(boost::bind(&TraceThread, "opencon", &ThreadOpenConnections)); // Process messages threadGroup.create_thread(boost::bind(&TraceThread, "msghand", &ThreadMessageHandler)); // Dump network addresses scheduler.scheduleEvery(&DumpAddresses, DUMP_ADDRESSES_INTERVAL); // Dump zindex stats if -zindex is enabled if (fZindex) { scheduler.scheduleEvery(&DumpZindexStats, DUMP_ZINDEX_INTERVAL); } // Dump network addresses scheduler.scheduleEvery(&DumpAddresses, DUMP_ADDRESSES_INTERVAL); scheduler.scheduleEvery(&CheckIfWeShouldStop, CHECK_PLZ_STOP_INTERVAL); } bool StopNode() { LogPrintf("StopNode()\n"); if (semOutbound) for (int i=0; i<(MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS); i++) semOutbound->post(); // persist current zindex stats to disk before we exit DumpZindexStats(); if (HUSH_NSPV_FULLNODE && fAddressesInitialized) { DumpAddresses(); fAddressesInitialized = false; } return true; } static class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { // Close sockets BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->hSocket != INVALID_SOCKET) CloseSocket(pnode->hSocket); BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) BOOST_FOREACH(CNode *pnode, vNodes) delete pnode; BOOST_FOREACH(CNode *pnode, vNodesDisconnected) delete pnode; vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); delete semOutbound; semOutbound = NULL; delete pnodeLocalHost; pnodeLocalHost = NULL; #ifdef _WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void RelayTransaction(const CTransaction& tx) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(10000); ss << tx; RelayTransaction(tx, ss); } void RelayTransaction(const CTransaction& tx, const CDataStream& ss) { CInv inv(MSG_TX, tx.GetHash()); { LOCK(cs_mapRelay); // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime()) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } // Save original serialized message so newer versions are preserved mapRelay.insert(std::make_pair(inv, ss)); vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv)); } LOCK(cs_vNodes); auto vRelayNodes = vNodes; // If we have no nodes to relay to, there is nothing to do if(vNodes.size() == 0) { fprintf(stderr, "%s: No nodes to relay to!\n", __func__ ); return; } // We always round down, except when we have only 1 connection auto newSize = (vNodes.size() / 2) == 0 ? 1 : (vNodes.size() / 2); random_shuffle( vRelayNodes.begin(), vRelayNodes.end(), GetRandInt ); vRelayNodes.resize(newSize); if (HUSH_TESTNODE==1 && vNodes.size() == 0) { fprintf(stderr, "%s: -testnode=1, no peers, not relaying\n", __func__ ); return; } else { fprintf(stderr, "%s: Relaying %s to %lu of %lu peers\n", __func__, tx.GetHash().GetHex().c_str(), newSize, vNodes.size() ); } // Only relay to randomly chosen 50% of peers BOOST_FOREACH(CNode* pnode, vRelayNodes) { //TODO: correct fix is to correctly LOCK vRelayNodes if(!pnode) continue; if(!pnode->fRelayTxes) continue; LOCK(pnode->cs_filter); if (pnode->pfilter) { if (pnode->pfilter->IsRelevantAndUpdate(tx)) { pnode->PushInventory(inv); } } else { pnode->PushInventory(inv); } } } void CNode::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CNode::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; } uint64_t CNode::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CNode::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } void CNode::Fuzz(int nChance) { if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages switch (GetRand(3)) { case 0: // xor a random byte with a random value: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend[pos] ^= (unsigned char)(GetRand(256)); } break; case 1: // delete a random byte: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend.erase(ssSend.begin()+pos); } break; case 2: // insert a random byte at a random position { CDataStream::size_type pos = GetRand(ssSend.size()); char ch = (char)GetRand(256); ssSend.insert(ssSend.begin()+pos, ch); } break; } // Chance of more than one change half the time: // (more changes exponentially less likely): Fuzz(2); } // CAddrDB CAddrDB::CAddrDB() { pathAddr = GetDataDir() / "peers.dat"; } bool CAddrDB::Write(const CAddrMan& addr) { // Generate random temporary filename unsigned short randv = 0; GetRandBytes((unsigned char*)&randv, sizeof(randv)); std::string tmpfn = strprintf("peers.dat.%04x", randv); // serialize addresses, checksum data up to that point, then append csum CDataStream ssPeers(SER_DISK, CLIENT_VERSION); ssPeers << FLATDATA(Params().MessageStart()); ssPeers << addr; uint256 hash = Hash(ssPeers.begin(), ssPeers.end()); ssPeers << hash; // open temp output file, and associate with CAutoFile boost::filesystem::path pathTmp = GetDataDir() / tmpfn; FILE *file = fopen(pathTmp.string().c_str(), "wb"); CAutoFile fileout(file, SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("%s: Failed to open file %s", __func__, pathTmp.string()); // Write and commit header, data try { fileout << ssPeers; } catch (const std::exception& e) { return error("%s: Serialize or I/O error - %s", __func__, e.what()); } FileCommit(fileout.Get()); fileout.fclose(); // replace existing peers.dat, if any, with new peers.dat.XXXX if (!RenameOver(pathTmp, pathAddr)) return error("%s: Rename-into-place failed", __func__); return true; } bool CAddrDB::Read(CAddrMan& addr) { // open input file, and associate with CAutoFile FILE *file = fopen(pathAddr.string().c_str(), "rb"); CAutoFile filein(file, SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("%s: Failed to open file %s", __func__, pathAddr.string()); // use file size to size memory buffer int fileSize = boost::filesystem::file_size(pathAddr); int dataSize = fileSize - sizeof(uint256); // Don't try to resize to a negative number if file is small if (dataSize < 0) dataSize = 0; vector vchData; vchData.resize(dataSize); uint256 hashIn; // read data and checksum from file try { filein.read((char *)&vchData[0], dataSize); filein >> hashIn; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } filein.fclose(); CDataStream ssPeers(vchData, SER_DISK, CLIENT_VERSION); // verify stored checksum matches input data uint256 hashTmp = Hash(ssPeers.begin(), ssPeers.end()); if (hashIn != hashTmp) return error("%s: Checksum mismatch, data corrupted", __func__); unsigned char pchMsgTmp[4]; try { // de-serialize file header (network specific magic number) and .. ssPeers >> FLATDATA(pchMsgTmp); // ... verify the network matches ours if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp))) return error("%s: Invalid network magic number in %s", __func__, pathAddr.string()); // de-serialize address data into one CAddrMan object ssPeers >> addr; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } return true; } unsigned int ReceiveFloodSize() { return 1000*GetArg("-maxreceivebuffer", 5*1000); } unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", 1*1000); } CNode::CNode(SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn, WOLFSSL *sslIn) : ssSend(SER_NETWORK, INIT_PROTO_VERSION), addrKnown(5000, 0.001), setInventoryKnown(SendBufferSize() / 1000) { ssl = sslIn; nServices = 0; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeConnected = GetTime(); nTimeOffset = 0; addr = addrIn; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fAllowlisted = false; fOneShot = false; fClient = false; // set by version message fFeeler = false; fInbound = fInboundIn; fNetworkNode = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; fGetAddr = false; fRelayTxes = false; fSentAddr = false; pfilter = new CBloomFilter(); nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; nPingRetry = 0; nMinPingUsecTime = std::numeric_limits::max(); { LOCK(cs_nLastNodeId); id = nLastNodeId++; } if (fLogIPs) LogPrint("net", "Added connection to %s peer=%d\n", addrName, id); else LogPrint("net", "Added connection peer=%d\n", id); // Be shy and don't send version until we hear if (hSocket != INVALID_SOCKET && !fInbound) PushVersion(); GetNodeSignals().InitializeNode(GetId(), this); m_serializer = std::unique_ptr(new V1TransportSerializer()); } bool CNode::GetTlsValidate() { if (tlsValidate == eTlsOption::FALLBACK_UNSET) { // This is useful for private Hush Smart Chains, that want to exist // on a closed VPN with an internal CA or trusted cert system, or // various other use cases if ( GetBoolArg("-tlsvalidate", false)) { LogPrint("tls", "%s():%d - TLS certificates will be validated\n", __func__, __LINE__); tlsValidate = eTlsOption::FALLBACK_TRUE; } else { LogPrint("tls", "%s():%d - TLS certificates will NOT be validated\n", __func__, __LINE__); tlsValidate = eTlsOption::FALLBACK_FALSE; } } return (tlsValidate == eTlsOption::FALLBACK_TRUE); } CNode::~CNode() { // No need to make a lock on cs_hSocket, because before deletion CNode object is removed from the vNodes vector, so any other thread hasn't access to it. // Removal is synchronized with read and write routines, so all of them will be completed to this moment. if (hSocket != INVALID_SOCKET) { if (ssl) { unsigned long err_code = 0; tlsmanager.waitFor(SSL_SHUTDOWN, hSocket, ssl, (DEFAULT_CONNECT_TIMEOUT / 1000), err_code); wolfSSL_free(ssl); ssl = NULL; } CloseSocket(hSocket); } if (pfilter) delete pfilter; GetNodeSignals().FinalizeNode(GetId()); } void CNode::AskFor(const CInv& inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) return; // a peer may not have multiple non-responded queue positions for a single inv item if (!setAskFor.insert(inv.hash).second) return; // We're using mapAskFor as a priority queue, // the key is the earliest time the request can be sent int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv); if (it != mapAlreadyAskedFor.end()) nRequestTime = it->second; else nRequestTime = 0; LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) mapAlreadyAskedFor.update(it, nRequestTime); else mapAlreadyAskedFor.insert(std::make_pair(inv, nRequestTime)); mapAskFor.insert(std::make_pair(nRequestTime, inv)); } void CNode::BeginMessage(const char* pszCommand) EXCLUSIVE_LOCK_FUNCTION(cs_vSend) { ENTER_CRITICAL_SECTION(cs_vSend); assert(ssSend.size() == 0); ssSend << CMessageHeader(Params().MessageStart(), pszCommand, 0); LogPrint("net", "sending: %s ", SanitizeString(pszCommand)); } void CNode::AbortMessage() UNLOCK_FUNCTION(cs_vSend) { ssSend.clear(); LEAVE_CRITICAL_SECTION(cs_vSend); LogPrint("net", "(aborted)\n"); } void CNode::EndMessage() UNLOCK_FUNCTION(cs_vSend) { // The -*messagestest options are intentionally not documented in the help message, // since they are only used during development to debug the networking code and are // not intended for end-users. if (mapArgs.count("-dropmessagestest") && GetRand(GetArg("-dropmessagestest", 2)) == 0) { LogPrint("net", "dropmessages DROPPING SEND MESSAGE\n"); AbortMessage(); return; } if (mapArgs.count("-fuzzmessagestest")) Fuzz(GetArg("-fuzzmessagestest", 10)); if (ssSend.size() == 0) { LEAVE_CRITICAL_SECTION(cs_vSend); return; } // Set the size unsigned int nSize = ssSend.size() - CMessageHeader::HEADER_SIZE; WriteLE32((uint8_t*)&ssSend[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize); // Set the checksum uint256 hash = Hash(ssSend.begin() + CMessageHeader::HEADER_SIZE, ssSend.end()); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); assert(ssSend.size () >= CMessageHeader::CHECKSUM_OFFSET + sizeof(nChecksum)); memcpy((char*)&ssSend[CMessageHeader::CHECKSUM_OFFSET], &nChecksum, sizeof(nChecksum)); LogPrint("net", "(%d bytes) peer=%d\n", nSize, id); std::deque::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData()); ssSend.GetAndClear(*it); nSendSize += (*it).size(); // If write queue empty, attempt "optimistic write" if (it == vSendMsg.begin()) SocketSendData(this); LEAVE_CRITICAL_SECTION(cs_vSend); } void CNode::PushAddrMessage(CSerializedNetMsg&& msg) { size_t nMessageSize = msg.data.size(); LogPrint("net", "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.m_type), nMessageSize, GetId()); // make sure we use the appropriate network transport format std::vector serializedHeader; m_serializer->prepareForTransport(msg, serializedHeader); size_t nTotalSize = nMessageSize + serializedHeader.size(); { LOCK(cs_vSend); //log total amount of bytes per message type mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize; nSendSize += nTotalSize; // if (nSendSize > nSendBufferMaxSize) fPauseSend = true; //Add Header std::deque::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData()); CSerializeData &d = *it; d.insert(d.end(), serializedHeader.begin(), serializedHeader.end()); //Add Message if (nMessageSize) { d.insert(d.end(), msg.data.begin(), msg.data.end()); } if (it == vSendMsg.begin()) SocketSendData(this); } } size_t GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); if (flags == CONNECTIONS_ALL) // Shortcut if we want total return vNodes.size(); int nNum = 0; for (const auto& pnode : vNodes) { if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } void SetNetworkActive(bool active) { LogPrint("net", "SetNetworkActive: %s\n", active); if (fNetworkActive == active) { return; } fNetworkActive = active; if (!fNetworkActive) { LOCK(cs_vNodes); // Close sockets to all nodes for (CNode* pnode : vNodes) { pnode->CloseSocketDisconnect(); } } // uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } void CopyNodeStats(std::vector& vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); BOOST_FOREACH(CNode* pnode, vNodes) { CNodeStats stats; pnode->copyStats(stats, addrman.m_asmap); vstats.push_back(stats); } }