// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Copyright (c) 2019-2020 The Hush developers // Distributed under the GPLv3 software license, see the accompanying // file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html /****************************************************************************** * Copyright © 2014-2019 The SuperNET Developers. * * * * See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at * * the top-level directory of this distribution for the individual copyright * * holder information and the developer policies on copyright and licensing. * * * * Unless otherwise agreed in a custom licensing agreement, no part of the * * SuperNET software, including this file may be copied, modified, propagated * * or distributed except according to the terms contained in the LICENSE file * * * * Removal or modification of this copyright notice is prohibited. * * * ******************************************************************************/ #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "main.h" #include "net.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "primitives/transaction.h" #include "scheduler.h" #include "ui_interface.h" #include "crypto/common.h" #include "hush/utiltls.h" #ifdef _WIN32 #include #else #include #endif #include #include #include #include #include #include using namespace hush; // Dump addresses to peers.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef _WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif #define USE_TLS #define COMPAT_NON_TLS // enables compatibility with nodes, that still doesn't support TLS connections using namespace std; namespace { const int MAX_OUTBOUND_CONNECTIONS = 16; const int MAX_INBOUND_FROMIP = 5; struct ListenSocket { SOCKET socket; bool whitelisted; ListenSocket(SOCKET socket, bool whitelisted) : socket(socket), whitelisted(whitelisted) {} }; } // // Global state variables // extern uint16_t ASSETCHAINS_P2PPORT; extern int8_t is_STAKED(const char *chain_name); extern char ASSETCHAINS_SYMBOL[65]; bool fDiscover = true; bool fListen = true; uint64_t nLocalServices = NODE_NETWORK | NODE_NSPV; CCriticalSection cs_mapLocalHost; map mapLocalHost; static bool vfLimited[NET_MAX] = {}; static CNode* pnodeLocalHost = NULL; uint64_t nLocalHostNonce = 0; static std::vector vhListenSocket; CAddrMan addrman; int nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS; bool fAddressesInitialized = false; std::string strSubVersion; TLSManager tlsmanager = TLSManager(); vector vNodes; CCriticalSection cs_vNodes; map mapRelay; deque > vRelayExpiration; CCriticalSection cs_mapRelay; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); static deque vOneShots; static CCriticalSection cs_vOneShots; static set setservAddNodeAddresses; static CCriticalSection cs_setservAddNodeAddresses; vector vAddedNodes; CCriticalSection cs_vAddedNodes; NodeId nLastNodeId = 0; CCriticalSection cs_nLastNodeId; static CSemaphore *semOutbound = NULL; static boost::condition_variable messageHandlerCondition; // Signals for message handling static CNodeSignals g_signals; CNodeSignals& GetNodeSignals() { return g_signals; } // OpenSSL server and client contexts SSL_CTX *tls_ctx_server, *tls_ctx_client; static bool operator==(_NODE_ADDR a, _NODE_ADDR b) { return (a.ipAddr == b.ipAddr); } static std::vector vNonTLSNodesInbound; static CCriticalSection cs_vNonTLSNodesInbound; static std::vector vNonTLSNodesOutbound; static CCriticalSection cs_vNonTLSNodesOutbound; void AddOneShot(const std::string& strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { //printf("Listenport.%u\n",Params().GetDefaultPort()); return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (map::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) { int nScore = (*it).second.nScore; int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService((*it).first, (*it).second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeeds6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. // Seed nodes are given a random 'last seen time' of between one and two // weeks ago. const int64_t nOneWeek = 7*24*60*60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (std::vector::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i) { struct in6_addr ip; memcpy(&ip, i->addr, sizeof(ip)); CAddress addr(CService(ip, i->port)); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer) { CAddress ret(CService("0.0.0.0",GetListenPort()),0); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr); } ret.nServices = nLocalServices; ret.nTime = GetTime(); return ret; } int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() && !IsLimited(pnode->addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertizeLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr); // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->addrLocal); } if (addrLocal.IsRoutable()) { LogPrintf("AdvertizeLocal: advertizing address %s\n", addrLocal.ToString()); pnode->PushAddress(addrLocal); } } } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } bool RemoveLocal(const CService& addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); return true; } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } void AddressCurrentlyConnected(const CService& addr) { addrman.Connected(addr); } uint64_t CNode::nTotalBytesRecv = 0; uint64_t CNode::nTotalBytesSent = 0; CCriticalSection CNode::cs_totalBytesRecv; CCriticalSection CNode::cs_totalBytesSent; CNode* FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CNetAddr)pnode->addr == ip) return (pnode); return NULL; } CNode* FindNode(const CSubNet& subNet) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (subNet.Match((CNetAddr)pnode->addr)) return (pnode); return NULL; } CNode* FindNode(const std::string& addrName) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->addrName == addrName) return (pnode); return NULL; } CNode* FindNode(const CService& addr) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CService)pnode->addr == addr) return (pnode); return NULL; } CNode* ConnectNode(CAddress addrConnect, const char *pszDest) { if (pszDest == NULL) { if (IsLocal(addrConnect)) return NULL; // Look for an existing connection CNode* pnode = FindNode((CService)addrConnect); if (pnode) { pnode->AddRef(); return pnode; } } /// debug print LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetTime() - addrConnect.nTime)/3600.0); // Connect SOCKET hSocket; bool proxyConnectionFailed = false; if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) : ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed)) { if (!IsSelectableSocket(hSocket)) { LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n"); CloseSocket(hSocket); return NULL; } addrman.Attempt(addrConnect); SSL *ssl = NULL; #ifdef USE_TLS /* TCP connection is ready. Do client side SSL. */ #ifdef COMPAT_NON_TLS { LOCK(cs_vNonTLSNodesOutbound); NODE_ADDR nodeAddr(addrConnect.ToStringIP()); bool bUseTLS = ((GetBoolArg("-tls", true) || GetArg("-tls", "") == "only") && find(vNonTLSNodesOutbound.begin(), vNonTLSNodesOutbound.end(), nodeAddr) == vNonTLSNodesOutbound.end()); if (bUseTLS) { ssl = tlsmanager.connect(hSocket, addrConnect); if (!ssl) { if (GetArg("-tls", "") != "only") { // Further reconnection will be made in non-TLS (unencrypted) mode if mandatory tls is not set vNonTLSNodesOutbound.push_back(NODE_ADDR(addrConnect.ToStringIP(), GetTimeMillis())); } CloseSocket(hSocket); return NULL; } } else { LogPrintf ("Connection to %s will be unencrypted\n", addrConnect.ToString()); vNonTLSNodesOutbound.erase( remove( vNonTLSNodesOutbound.begin(), vNonTLSNodesOutbound.end(), nodeAddr), vNonTLSNodesOutbound.end()); } } #else ssl = TLSManager::connect(hSocket, addrConnect); if(!ssl) { CloseSocket(hSocket); return NULL; } #endif // COMPAT_NON_TLS #endif // USE_TLS // Add node CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false, ssl); pnode->AddRef(); { LOCK(cs_vNodes); vNodes.push_back(pnode); } pnode->nTimeConnected = GetTime(); return pnode; } else if (!proxyConnectionFailed) { // If connecting to the node failed, and failure is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect); } return NULL; } void CNode::CloseSocketDisconnect() { fDisconnect = true; { LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { try { LogPrint("net", "disconnecting peer=%d\n", id); } catch(std::bad_alloc&) { // when the node is shutting down, the call above might use invalid memory resulting in a // std::bad_alloc exception when instantiating internal objs for handling log category LogPrintf("(node is probably shutting down) disconnecting peer=%d\n", id); } if (ssl) { tlsmanager.waitFor(SSL_SHUTDOWN, hSocket, ssl, (DEFAULT_CONNECT_TIMEOUT / 1000)); SSL_free(ssl); ssl = NULL; } CloseSocket(hSocket); } } // in case this fails, we'll empty the recv buffer when the CNode is deleted TRY_LOCK(cs_vRecvMsg, lockRecv); if (lockRecv) vRecvMsg.clear(); } extern int32_t KOMODO_NSPV; #ifndef KOMODO_NSPV_FULLNODE #define KOMODO_NSPV_FULLNODE (KOMODO_NSPV <= 0) #endif // !KOMODO_NSPV_FULLNODE #ifndef KOMODO_NSPV_SUPERLITE #define KOMODO_NSPV_SUPERLITE (KOMODO_NSPV > 0) #endif // !KOMODO_NSPV_SUPERLITE void CNode::PushVersion() { int nBestHeight = g_signals.GetHeight().get_value_or(0); int64_t nTime = (fInbound ? GetTime() : GetTime()); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService("0.0.0.0",0))); CAddress addrMe = GetLocalAddress(&addr); GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce)); if (fLogIPs) LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id); else LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id); PushMessage("version", PROTOCOL_VERSION, nLocalServices, nTime, addrYou, addrMe, nLocalHostNonce, strSubVersion, nBestHeight, true); //fprintf(stderr,"KOMODO_NSPV.%d PUSH services.%llx\n",KOMODO_NSPV,(long long)nLocalServices); } std::map CNode::setBanned; CCriticalSection CNode::cs_setBanned; void CNode::ClearBanned() { LOCK(cs_setBanned); setBanned.clear(); } bool CNode::IsBanned(CNetAddr ip) { bool fResult = false; { LOCK(cs_setBanned); for (std::map::iterator it = setBanned.begin(); it != setBanned.end(); it++) { CSubNet subNet = (*it).first; int64_t t = (*it).second; if(subNet.Match(ip) && GetTime() < t) fResult = true; } } return fResult; } bool CNode::IsBanned(CSubNet subnet) { bool fResult = false; { LOCK(cs_setBanned); std::map::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { int64_t t = (*i).second; if (GetTime() < t) fResult = true; } } return fResult; } void CNode::Ban(const CNetAddr& addr, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr.ToString()+(addr.IsIPv4() ? "/32" : "/128")); Ban(subNet, bantimeoffset, sinceUnixEpoch); } void CNode::Ban(const CSubNet& subNet, int64_t bantimeoffset, bool sinceUnixEpoch) { int64_t banTime = GetTime()+GetArg("-bantime", 60*60*24); // Default 24-hour ban if (bantimeoffset > 0) banTime = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset; LOCK(cs_setBanned); if (setBanned[subNet] < banTime) setBanned[subNet] = banTime; } bool CNode::Unban(const CNetAddr &addr) { CSubNet subNet(addr.ToString()+(addr.IsIPv4() ? "/32" : "/128")); return Unban(subNet); } bool CNode::Unban(const CSubNet &subNet) { LOCK(cs_setBanned); if (setBanned.erase(subNet)) return true; return false; } void CNode::GetBanned(std::map &banMap) { LOCK(cs_setBanned); banMap = setBanned; //create a thread safe copy } std::vector CNode::vWhitelistedRange; CCriticalSection CNode::cs_vWhitelistedRange; bool CNode::IsWhitelistedRange(const CNetAddr &addr) { LOCK(cs_vWhitelistedRange); BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } void CNode::AddWhitelistedRange(const CSubNet &subnet) { LOCK(cs_vWhitelistedRange); vWhitelistedRange.push_back(subnet); } void CNode::copyStats(CNodeStats &stats, const std::vector &m_asmap) { stats.nodeid = this->GetId(); stats.nServices = nServices; stats.addr = addr; // stats.addrBind = addrBind; stats.m_mapped_as = addr.GetMappedAS(m_asmap); stats.nLastSend = nLastSend; stats.nLastRecv = nLastRecv; stats.nTimeConnected = nTimeConnected; stats.nTimeOffset = nTimeOffset; stats.addrName = addrName; stats.nVersion = nVersion; stats.cleanSubVer = cleanSubVer; stats.fInbound = fInbound; stats.nStartingHeight = nStartingHeight; stats.nSendBytes = nSendBytes; stats.nRecvBytes = nRecvBytes; stats.fWhitelisted = fWhitelisted; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : ""; // If ssl != NULL it means TLS connection was established successfully { LOCK(cs_hSocket); stats.fTLSEstablished = (ssl != NULL) && (SSL_get_state(ssl) == TLS_ST_OK); } } // requires LOCK(cs_vRecvMsg) bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes) { while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { msg.nTime = GetTimeMicros(); messageHandlerCondition.notify_one(); } } return true; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } // requires LOCK(cs_vSend) void SocketSendData(CNode *pnode) { std::deque::iterator it = pnode->vSendMsg.begin(); while (it != pnode->vSendMsg.end()) { const CSerializeData &data = *it; assert(data.size() > pnode->nSendOffset); bool bIsSSL = false; int nBytes = 0, nRet = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { LogPrint("net", "Send: connection with %s is already closed\n", pnode->addr.ToString()); break; } bIsSSL = (pnode->ssl != NULL); if (bIsSSL) { ERR_clear_error(); // clear the error queue, otherwise we may be reading an old error that occurred previously in the current thread nBytes = SSL_write(pnode->ssl, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset); nRet = SSL_get_error(pnode->ssl, nBytes); } else { nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); nRet = WSAGetLastError(); } } if (nBytes > 0) { pnode->nLastSend = GetTime(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; pnode->RecordBytesSent(nBytes); if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes <= 0) { // error // if (bIsSSL) { if (nRet != SSL_ERROR_WANT_READ && nRet != SSL_ERROR_WANT_WRITE) { LogPrintf("ERROR: SSL_write %s; closing connection\n", ERR_error_string(nRet, NULL)); pnode->CloseSocketDisconnect(); } else { // preventive measure from exhausting CPU usage // MilliSleep(1); // 1 msec } } else { if (nRet != WSAEWOULDBLOCK && nRet != WSAEMSGSIZE && nRet != WSAEINTR && nRet != WSAEINPROGRESS) { LogPrintf("ERROR: send %s; closing connection\n", NetworkErrorString(nRet)); pnode->CloseSocketDisconnect(); } } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); } static list vNodesDisconnected; class CNodeRef { public: CNodeRef(CNode *pnode) : _pnode(pnode) { LOCK(cs_vNodes); _pnode->AddRef(); } ~CNodeRef() { LOCK(cs_vNodes); _pnode->Release(); } CNode& operator *() const {return *_pnode;}; CNode* operator ->() const {return _pnode;}; CNodeRef& operator =(const CNodeRef& other) { if (this != &other) { LOCK(cs_vNodes); _pnode->Release(); _pnode = other._pnode; _pnode->AddRef(); } return *this; } CNodeRef(const CNodeRef& other): _pnode(other._pnode) { LOCK(cs_vNodes); _pnode->AddRef(); } private: CNode *_pnode; }; static bool ReverseCompareNodeMinPingTime(const CNodeRef &a, const CNodeRef &b) { return a->nMinPingUsecTime > b->nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const CNodeRef &a, const CNodeRef &b) { return a->nTimeConnected > b->nTimeConnected; } class CompareNetGroupKeyed { std::vector vchSecretKey; public: CompareNetGroupKeyed() { vchSecretKey.resize(32, 0); GetRandBytes(vchSecretKey.data(), vchSecretKey.size()); } bool operator()(const CNodeRef &a, const CNodeRef &b) { std::vector vchGroupA, vchGroupB; CSHA256 hashA, hashB; std::vector vchA(32), vchB(32); vchGroupA = a->addr.GetGroup(addrman.m_asmap); vchGroupB = b->addr.GetGroup(addrman.m_asmap); hashA.Write(begin_ptr(vchGroupA), vchGroupA.size()); hashB.Write(begin_ptr(vchGroupB), vchGroupB.size()); hashA.Write(begin_ptr(vchSecretKey), vchSecretKey.size()); hashB.Write(begin_ptr(vchSecretKey), vchSecretKey.size()); hashA.Finalize(begin_ptr(vchA)); hashB.Finalize(begin_ptr(vchB)); return vchA < vchB; } }; static bool AttemptToEvictConnection(bool fPreferNewConnection) { std::vector vEvictionCandidates; { LOCK(cs_vNodes); BOOST_FOREACH(CNode *node, vNodes) { if (node->fWhitelisted) continue; if (!node->fInbound) continue; if (node->fDisconnect) continue; vEvictionCandidates.push_back(CNodeRef(node)); } } if (vEvictionCandidates.empty()) return false; // Protect connections with certain characteristics // Check version of eviction candidates and prioritize nodes which do not support network upgrade. std::vector vTmpEvictionCandidates; int height; { LOCK(cs_main); height = chainActive.Height(); } const Consensus::Params& params = Params().GetConsensus(); auto nextEpoch = NextEpoch(height, params); if (nextEpoch) { auto idx = nextEpoch.get(); int nActivationHeight = params.vUpgrades[idx].nActivationHeight; if (nActivationHeight > 0 && height < nActivationHeight && height >= nActivationHeight - NETWORK_UPGRADE_PEER_PREFERENCE_BLOCK_PERIOD) { // Find any nodes which don't support the protocol version for the next upgrade for (const CNodeRef &node : vEvictionCandidates) { if (node->nVersion < params.vUpgrades[idx].nProtocolVersion) { vTmpEvictionCandidates.push_back(node); } } // Prioritize these nodes by replacing eviction set with them if (vTmpEvictionCandidates.size() > 0) { vEvictionCandidates = vTmpEvictionCandidates; } } } // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected. static CompareNetGroupKeyed comparerNetGroupKeyed; std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), comparerNetGroupKeyed); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the 8 nodes with the best ping times. // An attacker cannot manipulate this metric without physically moving nodes closer to the target. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime); vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast(vEvictionCandidates.size())), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Protect the half of the remaining nodes which have been connected the longest. // This replicates the existing implicit behavior. std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected); vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast(vEvictionCandidates.size() / 2), vEvictionCandidates.end()); if (vEvictionCandidates.empty()) return false; // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) std::vector naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map, std::vector > mapAddrCounts; BOOST_FOREACH(const CNodeRef &node, vEvictionCandidates) { mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)].push_back(node); int64_t grouptime = mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)][0]->nTimeConnected; size_t groupsize = mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)].size(); if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = groupsize; nMostConnectionsTime = grouptime; naMostConnections = node->addr.GetGroup(addrman.m_asmap); } } // Reduce to the network group with the most connections vEvictionCandidates = mapAddrCounts[naMostConnections]; // Do not disconnect peers if there is only one unprotected connection from their network group. if (vEvictionCandidates.size() <= 1) // unless we prefer the new connection (for whitelisted peers) if (!fPreferNewConnection) return false; // Disconnect from the network group with the most connections vEvictionCandidates[0]->fDisconnect = true; return true; } static void AcceptConnection(const ListenSocket& hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - MAX_OUTBOUND_CONNECTIONS; if (hSocket != INVALID_SOCKET) if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) LogPrintf("Warning: Unknown socket family\n"); bool whitelisted = hListenSocket.whitelisted || CNode::IsWhitelistedRange(addr); int nInboundThisIP = 0; { LOCK(cs_vNodes); struct sockaddr_storage tmpsockaddr; socklen_t tmplen = sizeof(sockaddr); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->fInbound) { nInbound++; if (pnode->addr.GetSockAddr((struct sockaddr*)&tmpsockaddr, &tmplen) && (tmplen == len) && (memcmp(&sockaddr, &tmpsockaddr, tmplen) == 0)) nInboundThisIP++; } } } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } if (CNode::IsBanned(addr) && !whitelisted) { LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection(whitelisted)) { // No connection to evict, disconnect the new connection LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n"); CloseSocket(hSocket); return; } } if (nInboundThisIP >= MAX_INBOUND_FROMIP) { // No connection to evict, disconnect the new connection LogPrint("net", "too many connections from %s, connection refused\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted sockets // on all platforms. Set it again here just to be sure. int set = 1; #ifdef _WIN32 setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int)); #else setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int)); #endif SSL *ssl = NULL; SetSocketNonBlocking(hSocket, true); #ifdef USE_TLS /* TCP connection is ready. Do server side SSL. */ #ifdef COMPAT_NON_TLS { LOCK(cs_vNonTLSNodesInbound); NODE_ADDR nodeAddr(addr.ToStringIP()); bool bUseTLS = ((GetBoolArg("-tls", true) || GetArg("-tls", "") == "only") && find(vNonTLSNodesInbound.begin(), vNonTLSNodesInbound.end(), nodeAddr) == vNonTLSNodesInbound.end()); if (bUseTLS) { ssl = tlsmanager.accept( hSocket, addr); if(!ssl) { if (GetArg("-tls", "") != "only") { // Further reconnection will be made in non-TLS (unencrypted) mode if mandatory tls is not set vNonTLSNodesInbound.push_back(NODE_ADDR(addr.ToStringIP(), GetTimeMillis())); } CloseSocket(hSocket); return; } } else { LogPrintf ("TLS: Connection from %s will be unencrypted\n", addr.ToString()); vNonTLSNodesInbound.erase( remove( vNonTLSNodesInbound.begin(), vNonTLSNodesInbound.end(), nodeAddr ), vNonTLSNodesInbound.end()); } } #else ssl = TLSManager::accept( hSocket, addr); if(!ssl) { CloseSocket(hSocket); return; } #endif // COMPAT_NON_TLS #endif // USE_TLS CNode* pnode = new CNode(hSocket, addr, "", true, ssl); pnode->AddRef(); pnode->fWhitelisted = whitelisted; LogPrint("net", "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } #if defined(USE_TLS) && defined(COMPAT_NON_TLS) void ThreadNonTLSPoolsCleaner() { while (true) { tlsmanager.cleanNonTLSPool(vNonTLSNodesInbound, cs_vNonTLSNodesInbound); tlsmanager.cleanNonTLSPool(vNonTLSNodesOutbound, cs_vNonTLSNodesOutbound); MilliSleep(DEFAULT_CONNECT_TIMEOUT); // sleep and sleep_for are interruption points, which will throw boost::thread_interrupted } } #endif // USE_TLS && COMPAT_NON_TLS void ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (true) { // // Disconnect nodes // { LOCK(cs_vNodes); // Disconnect unused nodes vector vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect || (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty())) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released if (pnode->fNetworkNode || pnode->fInbound) pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes list vNodesDisconnectedCopy = vNodesDisconnected; BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); delete pnode; } } } } if(vNodes.size() != nPrevNodeCount) { nPrevNodeCount = vNodes.size(); uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount); } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = max(hSocketMax, pnode->hSocket); have_fds = true; // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signaling. // * Otherwise, if there is no (complete) message in the receive buffer, // or there is space left in the buffer, select() for receiving data. // * (if neither of the above applies, there is certainly one message // in the receiver buffer ready to be processed). // Together, that means that at least one of the following is always possible, // so we don't deadlock: // * We send some data. // * We wait for data to be received (and disconnect after timeout). // * We process a message in the buffer (message handler thread). { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend && !pnode->vSendMsg.empty()) { FD_SET(pnode->hSocket, &fdsetSend); continue; } } { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv && ( pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() || pnode->GetTotalRecvSize() <= ReceiveFloodSize())) FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); boost::this_thread::interruption_point(); if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); MilliSleep(timeout.tv_usec/1000); } // // Accept new connections // BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // // Service each socket // vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->AddRef(); } BOOST_FOREACH(CNode* pnode, vNodesCopy) { boost::this_thread::interruption_point(); if (tlsmanager.threadSocketHandler(pnode,fdsetRecv,fdsetSend,fdsetError)==-1) continue; // // Inactivity checking // int64_t nTime = GetTime(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } } } void ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute if ((addrman.size() > 0) && (!GetBoolArg("-forcednsseed", false))) { MilliSleep(11 * 1000); LOCK(cs_vNodes); if (vNodes.size() >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const vector &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { vector vIPs; vector vAdd; if (LookupHost(seed.host.c_str(), vIPs)) { BOOST_FOREACH(const CNetAddr& ip, vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort())); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old // only add seeds with the right port if (addr.GetPort() == ASSETCHAINS_P2PPORT) { vAdd.push_back(addr); found++; LogPrintf("%s: Added node via DNS seed: %s:%d", __FUNCTION__, ip.ToString(), ASSETCHAINS_P2PPORT); } else { LogPrintf("%s: Node has incorrect port %s:%d", __FUNCTION__, ip.ToString(), addr.GetPort() ); } } } addrman.Add(vAdd, CNetAddr(seed.name, true)); } } LogPrintf("%d addresses found from DNS seeds\n", found); } void DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void static ProcessOneShot() { string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { if (!OpenNetworkConnection(addr, &grant, strDest.c_str(), true)) AddOneShot(strDest); } } void ThreadOpenConnections() { // Connect to specific addresses if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"]) { CAddress addr; OpenNetworkConnection(addr, NULL, strAddr.c_str()); for (int i = 0; i < 10 && i < nLoop; i++) { MilliSleep(500); } } MilliSleep(500); } } // Initiate network connections int64_t nStart = GetTime(); while (true) { ProcessOneShot(); MilliSleep(500); CSemaphoreGrant grant(*semOutbound); boost::this_thread::interruption_point(); // Add seed nodes if DNS seeds are all down (an infrastructure attack?). // if (addrman.size() == 0 && (GetTime() - nStart > 60)) { if (GetTime() - nStart > 60) { static bool done = false; if (!done) { // skip DNS seeds for staked chains. if ( is_STAKED(ASSETCHAINS_SYMBOL) == 0 ) { //LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); LogPrintf("Adding fixed seed nodes.\n"); addrman.Add(convertSeed6(Params().FixedSeeds()), CNetAddr("127.0.0.1")); } done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). // Do this here so we don't have to critsect vNodes inside mapAddresses critsect. int nOutbound = 0; set > setConnected; { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fInbound) { setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap)); nOutbound++; } } } int64_t nANow = GetTime(); int nTries = 0; while (true) { CAddrInfo addr = addrman.Select(); // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup(addrman.m_asmap)) || IsLocal(addr)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) OpenNetworkConnection(addrConnect, &grant); } } void ThreadOpenAddedConnections() { { LOCK(cs_vAddedNodes); vAddedNodes = mapMultiArgs["-addnode"]; } if (HaveNameProxy()) { while(true) { list lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } BOOST_FOREACH(const std::string& strAddNode, lAddresses) { CAddress addr; CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(addr, &grant, strAddNode.c_str()); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } for (unsigned int i = 0; true; i++) { list lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(const std::string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } list > lservAddressesToAdd(0); BOOST_FOREACH(const std::string& strAddNode, lAddresses) { vector vservNode(0); if(Lookup(strAddNode.c_str(), vservNode, Params().GetDefaultPort(), fNameLookup, 0)) { lservAddressesToAdd.push_back(vservNode); { LOCK(cs_setservAddNodeAddresses); BOOST_FOREACH(const CService& serv, vservNode) setservAddNodeAddresses.insert(serv); } } } // Attempt to connect to each IP for each addnode entry until at least one is successful per addnode entry // (keeping in mind that addnode entries can have many IPs if fNameLookup) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) for (list >::iterator it = lservAddressesToAdd.begin(); it != lservAddressesToAdd.end(); it++) { BOOST_FOREACH(const CService& addrNode, *(it)) if (pnode->addr == addrNode) { it = lservAddressesToAdd.erase(it); if ( it != lservAddressesToAdd.begin() ) it--; break; } if (it == lservAddressesToAdd.end()) break; } } BOOST_FOREACH(vector& vserv, lservAddressesToAdd) { CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(CAddress(vserv[i % vserv.size()]), &grant); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } // if successful, this moves the passed grant to the constructed node bool OpenNetworkConnection(const CAddress& addrConnect, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot) { // // Initiate outbound network connection // boost::this_thread::interruption_point(); if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || CNode::IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return false; } else if (FindNode(std::string(pszDest))) return false; CNode* pnode = ConnectNode(addrConnect, pszDest); boost::this_thread::interruption_point(); #if defined(USE_TLS) && defined(COMPAT_NON_TLS) if (!pnode) { string strDest; int port; if (!pszDest) strDest = addrConnect.ToStringIP(); else SplitHostPort(string(pszDest), port, strDest); if (tlsmanager.isNonTLSAddr(strDest, vNonTLSNodesOutbound, cs_vNonTLSNodesOutbound)) { // Attempt to reconnect in non-TLS mode pnode = ConnectNode(addrConnect, pszDest); boost::this_thread::interruption_point(); } } #endif if (!pnode) return false; if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); pnode->fNetworkNode = true; if (fOneShot) pnode->fOneShot = true; return true; } void ThreadMessageHandler() { boost::mutex condition_mutex; boost::unique_lock lock(condition_mutex); SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL); while (true) { vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { pnode->AddRef(); } } // Poll the connected nodes for messages CNode* pnodeTrickle = NULL; if (!vNodesCopy.empty()) pnodeTrickle = vNodesCopy[GetRand(vNodesCopy.size())]; bool fSleep = true; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { if (!g_signals.ProcessMessages(pnode)) pnode->CloseSocketDisconnect(); if (pnode->nSendSize < SendBufferSize()) { if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete())) { fSleep = false; } } } } boost::this_thread::interruption_point(); // Send messages { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) g_signals.SendMessages(pnode, pnode == pnodeTrickle || pnode->fWhitelisted); } boost::this_thread::interruption_point(); } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } if (fSleep) messageHandlerCondition.timed_wait(lock, boost::posix_time::microsec_clock::universal_time() + boost::posix_time::milliseconds(100)); } } bool BindListenPort(const CService &addrBind, string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } if (!IsSelectableSocket(hListenSocket)) { strError = "Error: Couldn't create a listenable socket for incoming connections"; LogPrintf("%s\n", strError); return false; } #ifndef _WIN32 #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); #endif // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); // Disable Nagle's algorithm setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int)); setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int)); #endif // Set to non-blocking, incoming connections will also inherit this // // WARNING! // On Linux, the new socket returned by accept() does not inherit file // status flags such as O_NONBLOCK and O_ASYNC from the listening // socket. http://man7.org/linux/man-pages/man2/accept.2.html if (!SetSocketNonBlocking(hListenSocket, true)) { strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY #ifdef _WIN32 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); #endif #endif #ifdef _WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. Hush is probably already running."), addrBind.ToString()); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void static Discover(boost::thread_group& threadGroup) { if (!fDiscover) return; #ifdef _WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { vector vaddr; if (LookupHost(pszHostName, vaddr)) { BOOST_FOREACH (const CNetAddr &addr, vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } void StartNode(boost::thread_group& threadGroup, CScheduler& scheduler) { uiInterface.InitMessage(_("Loading addresses...")); // Load addresses for peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (!adb.Read(addrman)) LogPrintf("Invalid or missing peers.dat; recreating\n"); } LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); fAddressesInitialized = true; if (semOutbound == NULL) { // initialize semaphore int nMaxOutbound = min(MAX_OUTBOUND_CONNECTIONS, nMaxConnections); semOutbound = new CSemaphore(nMaxOutbound); } if (pnodeLocalHost == NULL) pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService("127.0.0.1", 0), nLocalServices)); Discover(threadGroup); #ifdef USE_TLS if (!tlsmanager.prepareCredentials()) { LogPrintf("TLS: ERROR: %s: %s: Credentials weren't loaded. Node can't be started.\n", __FILE__, __func__); return; } if (!tlsmanager.initialize()) { LogPrintf("TLS: ERROR: %s: %s: TLS initialization failed. Node can't be started.\n", __FILE__, __func__); return; } #else LogPrintf("TLS is not used!\n"); #endif // skip DNS seeds for staked chains. extern int8_t is_STAKED(const char *chain_name); extern char ASSETCHAINS_SYMBOL[65]; if ( is_STAKED(ASSETCHAINS_SYMBOL) != 0 ) SoftSetBoolArg("-dnsseed", false); // // Start threads // if (!GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadGroup.create_thread(boost::bind(&TraceThread, "dnsseed", &ThreadDNSAddressSeed)); // Send and receive from sockets, accept connections threadGroup.create_thread(boost::bind(&TraceThread, "net", &ThreadSocketHandler)); // Initiate outbound connections from -addnode threadGroup.create_thread(boost::bind(&TraceThread, "addcon", &ThreadOpenAddedConnections)); // Initiate outbound connections threadGroup.create_thread(boost::bind(&TraceThread, "opencon", &ThreadOpenConnections)); // Process messages threadGroup.create_thread(boost::bind(&TraceThread, "msghand", &ThreadMessageHandler)); #if defined(USE_TLS) && defined(COMPAT_NON_TLS) // Clean pools of addresses for non-TLS connections threadGroup.create_thread(boost::bind(&TraceThread, "poolscleaner", &ThreadNonTLSPoolsCleaner)); #endif // Dump network addresses scheduler.scheduleEvery(&DumpAddresses, DUMP_ADDRESSES_INTERVAL); } bool StopNode() { LogPrintf("StopNode()\n"); if (semOutbound) for (int i=0; ipost(); if (KOMODO_NSPV_FULLNODE && fAddressesInitialized) { DumpAddresses(); fAddressesInitialized = false; } return true; } static class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { // Close sockets BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->hSocket != INVALID_SOCKET) CloseSocket(pnode->hSocket); BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) BOOST_FOREACH(CNode *pnode, vNodes) delete pnode; BOOST_FOREACH(CNode *pnode, vNodesDisconnected) delete pnode; vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); delete semOutbound; semOutbound = NULL; delete pnodeLocalHost; pnodeLocalHost = NULL; #ifdef _WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void RelayTransaction(const CTransaction& tx) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(10000); ss << tx; RelayTransaction(tx, ss); } void RelayTransaction(const CTransaction& tx, const CDataStream& ss) { CInv inv(MSG_TX, tx.GetHash()); { LOCK(cs_mapRelay); // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime()) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } // Save original serialized message so newer versions are preserved mapRelay.insert(std::make_pair(inv, ss)); vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv)); } LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if(!pnode->fRelayTxes) continue; LOCK(pnode->cs_filter); if (pnode->pfilter) { if (pnode->pfilter->IsRelevantAndUpdate(tx)) pnode->PushInventory(inv); } else pnode->PushInventory(inv); } } void CNode::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CNode::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; } uint64_t CNode::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CNode::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } void CNode::Fuzz(int nChance) { if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages switch (GetRand(3)) { case 0: // xor a random byte with a random value: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend[pos] ^= (unsigned char)(GetRand(256)); } break; case 1: // delete a random byte: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend.erase(ssSend.begin()+pos); } break; case 2: // insert a random byte at a random position { CDataStream::size_type pos = GetRand(ssSend.size()); char ch = (char)GetRand(256); ssSend.insert(ssSend.begin()+pos, ch); } break; } // Chance of more than one change half the time: // (more changes exponentially less likely): Fuzz(2); } // // CAddrDB // CAddrDB::CAddrDB() { pathAddr = GetDataDir() / "peers.dat"; } bool CAddrDB::Write(const CAddrMan& addr) { // Generate random temporary filename unsigned short randv = 0; GetRandBytes((unsigned char*)&randv, sizeof(randv)); std::string tmpfn = strprintf("peers.dat.%04x", randv); // serialize addresses, checksum data up to that point, then append csum CDataStream ssPeers(SER_DISK, CLIENT_VERSION); ssPeers << FLATDATA(Params().MessageStart()); ssPeers << addr; uint256 hash = Hash(ssPeers.begin(), ssPeers.end()); ssPeers << hash; // open temp output file, and associate with CAutoFile boost::filesystem::path pathTmp = GetDataDir() / tmpfn; FILE *file = fopen(pathTmp.string().c_str(), "wb"); CAutoFile fileout(file, SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("%s: Failed to open file %s", __func__, pathTmp.string()); // Write and commit header, data try { fileout << ssPeers; } catch (const std::exception& e) { return error("%s: Serialize or I/O error - %s", __func__, e.what()); } FileCommit(fileout.Get()); fileout.fclose(); // replace existing peers.dat, if any, with new peers.dat.XXXX if (!RenameOver(pathTmp, pathAddr)) return error("%s: Rename-into-place failed", __func__); return true; } bool CAddrDB::Read(CAddrMan& addr) { // open input file, and associate with CAutoFile FILE *file = fopen(pathAddr.string().c_str(), "rb"); CAutoFile filein(file, SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("%s: Failed to open file %s", __func__, pathAddr.string()); // use file size to size memory buffer int fileSize = boost::filesystem::file_size(pathAddr); int dataSize = fileSize - sizeof(uint256); // Don't try to resize to a negative number if file is small if (dataSize < 0) dataSize = 0; vector vchData; vchData.resize(dataSize); uint256 hashIn; // read data and checksum from file try { filein.read((char *)&vchData[0], dataSize); filein >> hashIn; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } filein.fclose(); CDataStream ssPeers(vchData, SER_DISK, CLIENT_VERSION); // verify stored checksum matches input data uint256 hashTmp = Hash(ssPeers.begin(), ssPeers.end()); if (hashIn != hashTmp) return error("%s: Checksum mismatch, data corrupted", __func__); unsigned char pchMsgTmp[4]; try { // de-serialize file header (network specific magic number) and .. ssPeers >> FLATDATA(pchMsgTmp); // ... verify the network matches ours if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp))) return error("%s: Invalid network magic number", __func__); // de-serialize address data into one CAddrMan object ssPeers >> addr; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } return true; } unsigned int ReceiveFloodSize() { return 1000*GetArg("-maxreceivebuffer", 5*1000); } unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", 1*1000); } CNode::CNode(SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn, SSL *sslIn) : ssSend(SER_NETWORK, INIT_PROTO_VERSION), addrKnown(5000, 0.001), setInventoryKnown(SendBufferSize() / 1000) { ssl = sslIn; nServices = 0; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeConnected = GetTime(); nTimeOffset = 0; addr = addrIn; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; fClient = false; // set by version message fInbound = fInboundIn; fNetworkNode = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; fGetAddr = false; fRelayTxes = false; fSentAddr = false; pfilter = new CBloomFilter(); nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; nMinPingUsecTime = std::numeric_limits::max(); { LOCK(cs_nLastNodeId); id = nLastNodeId++; } if (fLogIPs) LogPrint("net", "Added connection to %s peer=%d\n", addrName, id); else LogPrint("net", "Added connection peer=%d\n", id); // Be shy and don't send version until we hear if (hSocket != INVALID_SOCKET && !fInbound) PushVersion(); GetNodeSignals().InitializeNode(GetId(), this); } CNode::~CNode() { // No need to make a lock on cs_hSocket, because before deletion CNode object is removed from the vNodes vector, so any other thread hasn't access to it. // Removal is synchronized with read and write routines, so all of them will be completed to this moment. if (hSocket != INVALID_SOCKET) { if (ssl) { tlsmanager.waitFor(SSL_SHUTDOWN, hSocket, ssl, (DEFAULT_CONNECT_TIMEOUT / 1000)); SSL_free(ssl); ssl = NULL; } CloseSocket(hSocket); } if (pfilter) delete pfilter; GetNodeSignals().FinalizeNode(GetId()); } void CNode::AskFor(const CInv& inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) return; // a peer may not have multiple non-responded queue positions for a single inv item if (!setAskFor.insert(inv.hash).second) return; // We're using mapAskFor as a priority queue, // the key is the earliest time the request can be sent int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv); if (it != mapAlreadyAskedFor.end()) nRequestTime = it->second; else nRequestTime = 0; LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) mapAlreadyAskedFor.update(it, nRequestTime); else mapAlreadyAskedFor.insert(std::make_pair(inv, nRequestTime)); mapAskFor.insert(std::make_pair(nRequestTime, inv)); } void CNode::BeginMessage(const char* pszCommand) EXCLUSIVE_LOCK_FUNCTION(cs_vSend) { ENTER_CRITICAL_SECTION(cs_vSend); assert(ssSend.size() == 0); ssSend << CMessageHeader(Params().MessageStart(), pszCommand, 0); LogPrint("net", "sending: %s ", SanitizeString(pszCommand)); } void CNode::AbortMessage() UNLOCK_FUNCTION(cs_vSend) { ssSend.clear(); LEAVE_CRITICAL_SECTION(cs_vSend); LogPrint("net", "(aborted)\n"); } void CNode::EndMessage() UNLOCK_FUNCTION(cs_vSend) { // The -*messagestest options are intentionally not documented in the help message, // since they are only used during development to debug the networking code and are // not intended for end-users. if (mapArgs.count("-dropmessagestest") && GetRand(GetArg("-dropmessagestest", 2)) == 0) { LogPrint("net", "dropmessages DROPPING SEND MESSAGE\n"); AbortMessage(); return; } if (mapArgs.count("-fuzzmessagestest")) Fuzz(GetArg("-fuzzmessagestest", 10)); if (ssSend.size() == 0) { LEAVE_CRITICAL_SECTION(cs_vSend); return; } // Set the size unsigned int nSize = ssSend.size() - CMessageHeader::HEADER_SIZE; WriteLE32((uint8_t*)&ssSend[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize); // Set the checksum uint256 hash = Hash(ssSend.begin() + CMessageHeader::HEADER_SIZE, ssSend.end()); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); assert(ssSend.size () >= CMessageHeader::CHECKSUM_OFFSET + sizeof(nChecksum)); memcpy((char*)&ssSend[CMessageHeader::CHECKSUM_OFFSET], &nChecksum, sizeof(nChecksum)); LogPrint("net", "(%d bytes) peer=%d\n", nSize, id); std::deque::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData()); ssSend.GetAndClear(*it); nSendSize += (*it).size(); // If write queue empty, attempt "optimistic write" if (it == vSendMsg.begin()) SocketSendData(this); LEAVE_CRITICAL_SECTION(cs_vSend); } void CopyNodeStats(std::vector& vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); BOOST_FOREACH(CNode* pnode, vNodes) { CNodeStats stats; pnode->copyStats(stats, addrman.m_asmap); vstats.push_back(stats); } }