#ifndef ENABLE_MODULE_MUSIG /********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html* **********************************************************************/ #ifndef SECP256K1_ECMULT_H #define SECP256K1_ECMULT_H #include "num.h" #include "group.h" typedef struct { /* For accelerating the computation of a*P + b*G: */ secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */ #ifdef USE_ENDOMORPHISM secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */ #endif } secp256k1_ecmult_context; static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx); static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb); static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, const secp256k1_ecmult_context *src, const secp256k1_callback *cb); static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx); static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx); /** Double multiply: R = na*A + ng*G */ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng); #endif /* SECP256K1_ECMULT_H */ #else /********************************************************************** * Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html* **********************************************************************/ #ifndef SECP256K1_ECMULT_H #define SECP256K1_ECMULT_H #include "num.h" #include "group.h" #include "scalar.h" #include "scratch.h" typedef struct { /* For accelerating the computation of a*P + b*G: */ secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */ #ifdef USE_ENDOMORPHISM secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */ #endif } secp256k1_ecmult_context; static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx); static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb); static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst, const secp256k1_ecmult_context *src, const secp256k1_callback *cb); static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx); static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx); /** Double multiply: R = na*A + ng*G */ static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng); typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data); /** * Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai. * Chooses the right algorithm for a given number of points and scratch space * size. Resets and overwrites the given scratch space. If the points do not * fit in the scratch space the algorithm is repeatedly run with batches of * points. If no scratch space is given then a simple algorithm is used that * simply multiplies the points with the corresponding scalars and adds them up. * Returns: 1 on success (including when inp_g_sc is NULL and n is 0) * 0 if there is not enough scratch space for a single point or * callback returns 0 */ #ifdef __cplusplus extern "C" #endif int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n); #endif /* SECP256K1_ECMULT_H */ #endif