// Copyright (c) 2015 The Bitcoin Core developers // Distributed under the GPLv3 software license, see the accompanying // file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html #include #include "prevector.h" #include "random.h" #include "serialize.h" #include "streams.h" #include "test/test_bitcoin.h" #include BOOST_FIXTURE_TEST_SUITE(PrevectorTests, TestingSetup) template class prevector_tester { typedef std::vector realtype; realtype real_vector; typedef prevector pretype; pretype pre_vector; typedef typename pretype::size_type Size; void test() { const pretype& const_pre_vector = pre_vector; BOOST_CHECK_EQUAL(real_vector.size(), pre_vector.size()); BOOST_CHECK_EQUAL(real_vector.empty(), pre_vector.empty()); for (Size s = 0; s < real_vector.size(); s++) { BOOST_CHECK(real_vector[s] == pre_vector[s]); BOOST_CHECK(&(pre_vector[s]) == &(pre_vector.begin()[s])); BOOST_CHECK(&(pre_vector[s]) == &*(pre_vector.begin() + s)); BOOST_CHECK(&(pre_vector[s]) == &*((pre_vector.end() + s) - real_vector.size())); } // BOOST_CHECK(realtype(pre_vector) == real_vector); BOOST_CHECK(pretype(real_vector.begin(), real_vector.end()) == pre_vector); BOOST_CHECK(pretype(pre_vector.begin(), pre_vector.end()) == pre_vector); size_t pos = 0; BOOST_FOREACH(const T& v, pre_vector) { BOOST_CHECK(v == real_vector[pos++]); } BOOST_REVERSE_FOREACH(const T& v, pre_vector) { BOOST_CHECK(v == real_vector[--pos]); } BOOST_FOREACH(const T& v, const_pre_vector) { BOOST_CHECK(v == real_vector[pos++]); } BOOST_REVERSE_FOREACH(const T& v, const_pre_vector) { BOOST_CHECK(v == real_vector[--pos]); } CDataStream ss1(SER_DISK, 0); CDataStream ss2(SER_DISK, 0); ss1 << real_vector; ss2 << pre_vector; BOOST_CHECK_EQUAL(ss1.size(), ss2.size()); for (Size s = 0; s < ss1.size(); s++) { BOOST_CHECK_EQUAL(ss1[s], ss2[s]); } } public: void resize(Size s) { real_vector.resize(s); BOOST_CHECK_EQUAL(real_vector.size(), s); pre_vector.resize(s); BOOST_CHECK_EQUAL(pre_vector.size(), s); test(); } void reserve(Size s) { real_vector.reserve(s); BOOST_CHECK(real_vector.capacity() >= s); pre_vector.reserve(s); BOOST_CHECK(pre_vector.capacity() >= s); test(); } void insert(Size position, const T& value) { real_vector.insert(real_vector.begin() + position, value); pre_vector.insert(pre_vector.begin() + position, value); test(); } void insert(Size position, Size count, const T& value) { real_vector.insert(real_vector.begin() + position, count, value); pre_vector.insert(pre_vector.begin() + position, count, value); test(); } template void insert_range(Size position, I first, I last) { real_vector.insert(real_vector.begin() + position, first, last); pre_vector.insert(pre_vector.begin() + position, first, last); test(); } void erase(Size position) { real_vector.erase(real_vector.begin() + position); pre_vector.erase(pre_vector.begin() + position); test(); } void erase(Size first, Size last) { real_vector.erase(real_vector.begin() + first, real_vector.begin() + last); pre_vector.erase(pre_vector.begin() + first, pre_vector.begin() + last); test(); } void update(Size pos, const T& value) { real_vector[pos] = value; pre_vector[pos] = value; test(); } void push_back(const T& value) { real_vector.push_back(value); pre_vector.push_back(value); test(); } void pop_back() { real_vector.pop_back(); pre_vector.pop_back(); test(); } void clear() { real_vector.clear(); pre_vector.clear(); } void assign(Size n, const T& value) { real_vector.assign(n, value); pre_vector.assign(n, value); } Size size() { return real_vector.size(); } Size capacity() { return pre_vector.capacity(); } void shrink_to_fit() { pre_vector.shrink_to_fit(); test(); } }; BOOST_AUTO_TEST_CASE(PrevectorTestInt) { for (int j = 0; j < 64; j++) { prevector_tester<8, int> test; for (int i = 0; i < 2048; i++) { int r = insecure_rand(); if ((r % 4) == 0) { test.insert(insecure_rand() % (test.size() + 1), insecure_rand()); } if (test.size() > 0 && ((r >> 2) % 4) == 1) { test.erase(insecure_rand() % test.size()); } if (((r >> 4) % 8) == 2) { int new_size = std::max(0, std::min(30, test.size() + (insecure_rand() % 5) - 2)); test.resize(new_size); } if (((r >> 7) % 8) == 3) { test.insert(insecure_rand() % (test.size() + 1), 1 + (insecure_rand() % 2), insecure_rand()); } if (((r >> 10) % 8) == 4) { int del = std::min(test.size(), 1 + (insecure_rand() % 2)); int beg = insecure_rand() % (test.size() + 1 - del); test.erase(beg, beg + del); } if (((r >> 13) % 16) == 5) { test.push_back(insecure_rand()); } if (test.size() > 0 && ((r >> 17) % 16) == 6) { test.pop_back(); } if (((r >> 21) % 32) == 7) { int values[4]; int num = 1 + (insecure_rand() % 4); for (int i = 0; i < num; i++) { values[i] = insecure_rand(); } test.insert_range(insecure_rand() % (test.size() + 1), values, values + num); } if (((r >> 26) % 32) == 8) { int del = std::min(test.size(), 1 + (insecure_rand() % 4)); int beg = insecure_rand() % (test.size() + 1 - del); test.erase(beg, beg + del); } r = insecure_rand(); if (r % 32 == 9) { test.reserve(insecure_rand() % 32); } if ((r >> 5) % 64 == 10) { test.shrink_to_fit(); } if (test.size() > 0) { test.update(insecure_rand() % test.size(), insecure_rand()); } if (((r >> 11) & 1024) == 11) { test.clear(); } if (((r >> 21) & 512) == 12) { test.assign(insecure_rand() % 32, insecure_rand()); } } } } BOOST_AUTO_TEST_SUITE_END()