// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Copyright (c) 2019-2020 The Hush developers // Distributed under the GPLv3 software license, see the accompanying // file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html /****************************************************************************** * Copyright © 2014-2019 The SuperNET Developers. * * * * See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at * * the top-level directory of this distribution for the individual copyright * * holder information and the developer policies on copyright and licensing. * * * * Unless otherwise agreed in a custom licensing agreement, no part of the * * SuperNET software, including this file may be copied, modified, propagated * * or distributed except according to the terms contained in the LICENSE file * * * * Removal or modification of this copyright notice is prohibited. * * * ******************************************************************************/ #include "txmempool.h" #include "clientversion.h" #include "consensus/consensus.h" #include "consensus/validation.h" #include "main.h" #include "policy/fees.h" #include "streams.h" #include "timedata.h" #include "util.h" #include "utilmoneystr.h" #include "validationinterface.h" #include "version.h" #define _COINBASE_MATURITY 100 using namespace std; CTxMemPoolEntry::CTxMemPoolEntry(): nFee(0), nTxSize(0), nModSize(0), nUsageSize(0), nTime(0), dPriority(0.0), hadNoDependencies(false), spendsCoinbase(false) { nHeight = MEMPOOL_HEIGHT; } CTxMemPoolEntry::CTxMemPoolEntry(const CTransaction& _tx, const CAmount& _nFee, int64_t _nTime, double _dPriority, unsigned int _nHeight, bool poolHasNoInputsOf, bool _spendsCoinbase, uint32_t _nBranchId): tx(_tx), nFee(_nFee), nTime(_nTime), dPriority(_dPriority), nHeight(_nHeight), hadNoDependencies(poolHasNoInputsOf), spendsCoinbase(_spendsCoinbase), nBranchId(_nBranchId) { nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); nModSize = tx.CalculateModifiedSize(nTxSize); nUsageSize = RecursiveDynamicUsage(tx); feeRate = CFeeRate(nFee, nTxSize); } CTxMemPoolEntry::CTxMemPoolEntry(const CTxMemPoolEntry& other) { *this = other; } double CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const { CAmount nValueIn = tx.GetValueOut()+nFee; double deltaPriority = ((double)(currentHeight-nHeight)*nValueIn)/nModSize; double dResult = dPriority + deltaPriority; return dResult; } CTxMemPool::CTxMemPool(const CFeeRate& _minRelayFee) : nTransactionsUpdated(0) { // Sanity checks off by default for performance, because otherwise // accepting transactions becomes O(N^2) where N is the number // of transactions in the pool nCheckFrequency = 0; minerPolicyEstimator = new CBlockPolicyEstimator(_minRelayFee); } CTxMemPool::~CTxMemPool() { delete minerPolicyEstimator; } void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins) { LOCK(cs); std::map::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0)); // iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx while (it != mapNextTx.end() && it->first.hash == hashTx) { coins.Spend(it->first.n); // and remove those outputs from coins it++; } } unsigned int CTxMemPool::GetTransactionsUpdated() const { LOCK(cs); return nTransactionsUpdated; } void CTxMemPool::AddTransactionsUpdated(unsigned int n) { LOCK(cs); nTransactionsUpdated += n; } bool CTxMemPool::addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry, bool fCurrentEstimate) { // Add to memory pool without checking anything. // Used by main.cpp AcceptToMemoryPool(), which DOES do // all the appropriate checks. LOCK(cs); mapTx.insert(entry); const CTransaction& tx = mapTx.find(hash)->GetTx(); mapRecentlyAddedTx[tx.GetHash()] = &tx; nRecentlyAddedSequence += 1; if (!tx.IsCoinImport()) { for (unsigned int i = 0; i < tx.vin.size(); i++) { if (tx.IsPegsImport() && i==0) continue; mapNextTx[tx.vin[i].prevout] = CInPoint(&tx, i); } } BOOST_FOREACH(const JSDescription &joinsplit, tx.vjoinsplit) { BOOST_FOREACH(const uint256 &nf, joinsplit.nullifiers) { mapSproutNullifiers[nf] = &tx; } } for (const SpendDescription &spendDescription : tx.vShieldedSpend) { mapSaplingNullifiers[spendDescription.nullifier] = &tx; } nTransactionsUpdated++; totalTxSize += entry.GetTxSize(); cachedInnerUsage += entry.DynamicMemoryUsage(); minerPolicyEstimator->processTransaction(entry, fCurrentEstimate); return true; } void CTxMemPool::addAddressIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view) { LOCK(cs); const CTransaction& tx = entry.GetTx(); std::vector inserted; uint256 txhash = tx.GetHash(); for (unsigned int j = 0; j < tx.vin.size(); j++) { if (tx.IsPegsImport() && j==0) continue; const CTxIn input = tx.vin[j]; const CTxOut &prevout = view.GetOutputFor(input); vector> vSols; txnouttype txType = TX_PUBKEYHASH; int keyType = 1; CTxDestination vDest; if (Solver(prevout.scriptPubKey, txType, vSols) || ExtractDestination(prevout.scriptPubKey, vDest)) { if (vDest.which()) { uint160 hashBytes; if (CBitcoinAddress(vDest).GetIndexKey(hashBytes, keyType, prevout.scriptPubKey.IsPayToCryptoCondition())) { vSols.push_back(vector(hashBytes.begin(), hashBytes.end())); } } if (txType == TX_SCRIPTHASH) { keyType = 2; } for (auto addr : vSols) { CMempoolAddressDeltaKey key(keyType, addr.size() == 20 ? uint160(addr) : Hash160(addr), txhash, j, true); CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n); mapAddress.insert(make_pair(key, delta)); inserted.push_back(key); } } } for (unsigned int k = 0; k < tx.vout.size(); k++) { const CTxOut &out = tx.vout[k]; vector> vSols; CTxDestination vDest; txnouttype txType = TX_PUBKEYHASH; int keyType = 1; if ((Solver(out.scriptPubKey, txType, vSols) || ExtractDestination(out.scriptPubKey, vDest)) && txType != TX_MULTISIG) { // if we failed to solve, and got a vDest, assume P2PKH or P2PK address returned if (vDest.which()) { uint160 hashBytes; if (CBitcoinAddress(vDest).GetIndexKey(hashBytes, keyType, out.scriptPubKey.IsPayToCryptoCondition())) { vSols.push_back(vector(hashBytes.begin(), hashBytes.end())); } } else if (txType == TX_SCRIPTHASH) { keyType = 2; } for (auto addr : vSols) { CMempoolAddressDeltaKey key(keyType, addr.size() == 20 ? uint160(addr) : Hash160(addr), txhash, k, 0); mapAddress.insert(make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue))); inserted.push_back(key); } } } mapAddressInserted.insert(make_pair(txhash, inserted)); } bool CTxMemPool::getAddressIndex(std::vector > &addresses, std::vector > &results) { LOCK(cs); for (std::vector >::iterator it = addresses.begin(); it != addresses.end(); it++) { addressDeltaMap::iterator ait = mapAddress.lower_bound(CMempoolAddressDeltaKey((*it).second, (*it).first)); while (ait != mapAddress.end() && (*ait).first.addressBytes == (*it).first && (*ait).first.type == (*it).second) { results.push_back(*ait); ait++; } } return true; } bool CTxMemPool::removeAddressIndex(const uint256 txhash) { LOCK(cs); addressDeltaMapInserted::iterator it = mapAddressInserted.find(txhash); if (it != mapAddressInserted.end()) { std::vector keys = (*it).second; for (std::vector::iterator mit = keys.begin(); mit != keys.end(); mit++) { mapAddress.erase(*mit); } mapAddressInserted.erase(it); } return true; } void CTxMemPool::addSpentIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view) { LOCK(cs); const CTransaction& tx = entry.GetTx(); std::vector inserted; uint256 txhash = tx.GetHash(); for (unsigned int j = 0; j < tx.vin.size(); j++) { if (tx.IsPegsImport() && j==0) continue; const CTxIn input = tx.vin[j]; const CTxOut &prevout = view.GetOutputFor(input); vector> vSols; CTxDestination vDest; txnouttype txType = TX_PUBKEYHASH; int keyType = 1; // some non-standard types, like time lock coinbases, don't solve, but do extract if ((Solver(prevout.scriptPubKey, txType, vSols) || ExtractDestination(prevout.scriptPubKey, vDest)) && txType != TX_MULTISIG) { // if we failed to solve, and got a vDest, assume P2PKH or P2PK address returned if (vDest.which()) { CKeyID kid; if (CBitcoinAddress(vDest).GetKeyID(kid)) { vSols.push_back(vector(kid.begin(), kid.end())); } } else if (txType == TX_SCRIPTHASH) { keyType = 2; } for (auto addr : vSols) { CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n); CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, keyType, addr.size() == 20 ? uint160(addr) : Hash160(addr)); mapSpent.insert(make_pair(key, value)); inserted.push_back(key); } } else { // don't know exactly how, but it was spent CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n); CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, 0, uint160()); mapSpent.insert(make_pair(key, value)); inserted.push_back(key); } } mapSpentInserted.insert(make_pair(txhash, inserted)); } bool CTxMemPool::getSpentIndex(CSpentIndexKey &key, CSpentIndexValue &value) { LOCK(cs); mapSpentIndex::iterator it; it = mapSpent.find(key); if (it != mapSpent.end()) { value = it->second; return true; } return false; } bool CTxMemPool::removeSpentIndex(const uint256 txhash) { LOCK(cs); mapSpentIndexInserted::iterator it = mapSpentInserted.find(txhash); if (it != mapSpentInserted.end()) { std::vector keys = (*it).second; for (std::vector::iterator mit = keys.begin(); mit != keys.end(); mit++) { mapSpent.erase(*mit); } mapSpentInserted.erase(it); } return true; } void CTxMemPool::remove(const CTransaction &origTx, std::list& removed, bool fRecursive) { // Remove transaction from memory pool { LOCK(cs); std::deque txToRemove; txToRemove.push_back(origTx.GetHash()); if (fRecursive && !mapTx.count(origTx.GetHash())) { // If recursively removing but origTx isn't in the mempool // be sure to remove any children that are in the pool. This can // happen during chain re-orgs if origTx isn't re-accepted into // the mempool for any reason. for (unsigned int i = 0; i < origTx.vout.size(); i++) { std::map::iterator it = mapNextTx.find(COutPoint(origTx.GetHash(), i)); if (it == mapNextTx.end()) continue; txToRemove.push_back(it->second.ptx->GetHash()); } } while (!txToRemove.empty()) { uint256 hash = txToRemove.front(); txToRemove.pop_front(); if (!mapTx.count(hash)) continue; const CTransaction& tx = mapTx.find(hash)->GetTx(); if (fRecursive) { for (unsigned int i = 0; i < tx.vout.size(); i++) { std::map::iterator it = mapNextTx.find(COutPoint(hash, i)); if (it == mapNextTx.end()) continue; txToRemove.push_back(it->second.ptx->GetHash()); } } mapRecentlyAddedTx.erase(hash); BOOST_FOREACH(const CTxIn& txin, tx.vin) mapNextTx.erase(txin.prevout); BOOST_FOREACH(const JSDescription& joinsplit, tx.vjoinsplit) { BOOST_FOREACH(const uint256& nf, joinsplit.nullifiers) { mapSproutNullifiers.erase(nf); } } for (const SpendDescription &spendDescription : tx.vShieldedSpend) { mapSaplingNullifiers.erase(spendDescription.nullifier); } removed.push_back(tx); totalTxSize -= mapTx.find(hash)->GetTxSize(); cachedInnerUsage -= mapTx.find(hash)->DynamicMemoryUsage(); mapTx.erase(hash); nTransactionsUpdated++; minerPolicyEstimator->removeTx(hash); removeAddressIndex(hash); removeSpentIndex(hash); } } } extern uint64_t ASSETCHAINS_TIMELOCKGTE; int64_t komodo_block_unlocktime(uint32_t nHeight); void CTxMemPool::removeForReorg(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight, int flags) { // Remove transactions spending a coinbase which are now immature extern char ASSETCHAINS_SYMBOL[KOMODO_ASSETCHAIN_MAXLEN]; if ( ASSETCHAINS_SYMBOL[0] == 0 ) COINBASE_MATURITY = _COINBASE_MATURITY; // Remove transactions spending a coinbase which are now immature and no-longer-final transactions LOCK(cs); list transactionsToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { const CTransaction& tx = it->GetTx(); if (!CheckFinalTx(tx, flags)) { transactionsToRemove.push_back(tx); } else if (it->GetSpendsCoinbase()) { BOOST_FOREACH(const CTxIn& txin, tx.vin) { indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) continue; const CCoins *coins = pcoins->AccessCoins(txin.prevout.hash); if (nCheckFrequency != 0) assert(coins); if (!coins || (coins->IsCoinBase() && (((signed long)nMemPoolHeight) - coins->nHeight < COINBASE_MATURITY) && ((signed long)nMemPoolHeight < komodo_block_unlocktime(coins->nHeight) && coins->IsAvailable(0) && coins->vout[0].nValue >= ASSETCHAINS_TIMELOCKGTE))) { transactionsToRemove.push_back(tx); break; } } } } BOOST_FOREACH(const CTransaction& tx, transactionsToRemove) { list removed; remove(tx, removed, true); } } void CTxMemPool::removeWithAnchor(const uint256 &invalidRoot, ShieldedType type) { // If a block is disconnected from the tip, and the root changed, // we must invalidate transactions from the mempool which spend // from that root -- almost as though they were spending coinbases // which are no longer valid to spend due to coinbase maturity. LOCK(cs); list transactionsToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { const CTransaction& tx = it->GetTx(); switch (type) { case SPROUT: BOOST_FOREACH(const JSDescription& joinsplit, tx.vjoinsplit) { if (joinsplit.anchor == invalidRoot) { transactionsToRemove.push_back(tx); break; } } break; case SAPLING: BOOST_FOREACH(const SpendDescription& spendDescription, tx.vShieldedSpend) { if (spendDescription.anchor == invalidRoot) { transactionsToRemove.push_back(tx); break; } } break; default: throw runtime_error("Unknown shielded type"); break; } } BOOST_FOREACH(const CTransaction& tx, transactionsToRemove) { list removed; remove(tx, removed, true); } } void CTxMemPool::removeConflicts(const CTransaction &tx, std::list& removed) { // Remove transactions which depend on inputs of tx, recursively list result; LOCK(cs); BOOST_FOREACH(const CTxIn &txin, tx.vin) { std::map::iterator it = mapNextTx.find(txin.prevout); if (it != mapNextTx.end()) { const CTransaction &txConflict = *it->second.ptx; if (txConflict != tx) { remove(txConflict, removed, true); } } } BOOST_FOREACH(const JSDescription &joinsplit, tx.vjoinsplit) { BOOST_FOREACH(const uint256 &nf, joinsplit.nullifiers) { std::map::iterator it = mapSproutNullifiers.find(nf); if (it != mapSproutNullifiers.end()) { const CTransaction &txConflict = *it->second; if (txConflict != tx) { remove(txConflict, removed, true); } } } } for (const SpendDescription &spendDescription : tx.vShieldedSpend) { std::map::iterator it = mapSaplingNullifiers.find(spendDescription.nullifier); if (it != mapSaplingNullifiers.end()) { const CTransaction &txConflict = *it->second; if (txConflict != tx) { remove(txConflict, removed, true); } } } } int32_t komodo_validate_interest(const CTransaction &tx,int32_t txheight,uint32_t nTime,int32_t dispflag); extern char ASSETCHAINS_SYMBOL[]; std::vector CTxMemPool::removeExpired(unsigned int nBlockHeight) { CBlockIndex *tipindex; // Remove expired txs from the mempool LOCK(cs); list transactionsToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { const CTransaction& tx = it->GetTx(); tipindex = chainActive.LastTip(); bool fInterestNotValidated = ASSETCHAINS_SYMBOL[0] == 0 && tipindex != 0 && komodo_validate_interest(tx,tipindex->GetHeight()+1,tipindex->GetMedianTimePast() + 777,0) < 0; if (IsExpiredTx(tx, nBlockHeight) || fInterestNotValidated) { if (fInterestNotValidated && tipindex != 0) LogPrintf("Removing interest violate txid.%s nHeight.%d nTime.%u vs locktime.%u\n",tx.GetHash().ToString(),tipindex->GetHeight()+1,tipindex->GetMedianTimePast() + 777,tx.nLockTime); transactionsToRemove.push_back(tx); } } std::vector ids; for (const CTransaction& tx : transactionsToRemove) { list removed; remove(tx, removed, true); ids.push_back(tx.GetHash()); LogPrint("mempool", "Removing expired txid: %s\n", tx.GetHash().ToString()); } return ids; } /** * Called when a block is connected. Removes from mempool and updates the miner fee estimator. */ void CTxMemPool::removeForBlock(const std::vector& vtx, unsigned int nBlockHeight, std::list& conflicts, bool fCurrentEstimate) { LOCK(cs); std::vector entries; BOOST_FOREACH(const CTransaction& tx, vtx) { uint256 hash = tx.GetHash(); indexed_transaction_set::iterator i = mapTx.find(hash); if (i != mapTx.end()) entries.push_back(*i); } BOOST_FOREACH(const CTransaction& tx, vtx) { std::list dummy; remove(tx, dummy, false); removeConflicts(tx, conflicts); ClearPrioritisation(tx.GetHash()); } // After the txs in the new block have been removed from the mempool, update policy estimates minerPolicyEstimator->processBlock(nBlockHeight, entries, fCurrentEstimate); } /** * Called whenever the tip changes. Removes transactions which don't commit to * the given branch ID from the mempool. */ void CTxMemPool::removeWithoutBranchId(uint32_t nMemPoolBranchId) { LOCK(cs); std::list transactionsToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { const CTransaction& tx = it->GetTx(); if (it->GetValidatedBranchId() != nMemPoolBranchId) { transactionsToRemove.push_back(tx); } } for (const CTransaction& tx : transactionsToRemove) { std::list removed; remove(tx, removed, true); } } void CTxMemPool::clear() { LOCK(cs); mapTx.clear(); mapNextTx.clear(); totalTxSize = 0; cachedInnerUsage = 0; ++nTransactionsUpdated; } void CTxMemPool::check(const CCoinsViewCache *pcoins) const { if (nCheckFrequency == 0) return; if (insecure_rand() >= nCheckFrequency) return; LogPrint("mempool", "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size()); uint64_t checkTotal = 0; uint64_t innerUsage = 0; CCoinsViewCache mempoolDuplicate(const_cast(pcoins)); const int64_t nSpendHeight = GetSpendHeight(mempoolDuplicate); LOCK(cs); list waitingOnDependants; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { unsigned int i = 0; checkTotal += it->GetTxSize(); innerUsage += it->DynamicMemoryUsage(); const CTransaction& tx = it->GetTx(); bool fDependsWait = false; BOOST_FOREACH(const CTxIn &txin, tx.vin) { // Check that every mempool transaction's inputs refer to available coins, or other mempool tx's. indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) { const CTransaction& tx2 = it2->GetTx(); assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull()); fDependsWait = true; } else { const CCoins* coins = pcoins->AccessCoins(txin.prevout.hash); assert(coins && coins->IsAvailable(txin.prevout.n)); } // Check whether its inputs are marked in mapNextTx. std::map::const_iterator it3 = mapNextTx.find(txin.prevout); assert(it3 != mapNextTx.end()); assert(it3->second.ptx == &tx); assert(it3->second.n == i); i++; } /* boost::unordered_map intermediates; BOOST_FOREACH(const JSDescription &joinsplit, tx.vjoinsplit) { BOOST_FOREACH(const uint256 &nf, joinsplit.nullifiers) { assert(!pcoins->GetNullifier(nf, SPROUT)); } SproutMerkleTree tree; auto it = intermediates.find(joinsplit.anchor); if (it != intermediates.end()) { tree = it->second; } else { assert(pcoins->GetSproutAnchorAt(joinsplit.anchor, tree)); } BOOST_FOREACH(const uint256& commitment, joinsplit.commitments) { tree.append(commitment); } intermediates.insert(std::make_pair(tree.root(), tree)); } */ for (const SpendDescription &spendDescription : tx.vShieldedSpend) { SaplingMerkleTree tree; assert(pcoins->GetSaplingAnchorAt(spendDescription.anchor, tree)); assert(!pcoins->GetNullifier(spendDescription.nullifier, SAPLING)); } if (fDependsWait) waitingOnDependants.push_back(&(*it)); else { CValidationState state; bool fCheckResult = tx.IsCoinBase() || Consensus::CheckTxInputs(tx, state, mempoolDuplicate, nSpendHeight, Params().GetConsensus()); assert(fCheckResult); UpdateCoins(tx, mempoolDuplicate, 1000000); } } unsigned int stepsSinceLastRemove = 0; while (!waitingOnDependants.empty()) { const CTxMemPoolEntry* entry = waitingOnDependants.front(); waitingOnDependants.pop_front(); CValidationState state; if (!mempoolDuplicate.HaveInputs(entry->GetTx())) { waitingOnDependants.push_back(entry); stepsSinceLastRemove++; assert(stepsSinceLastRemove < waitingOnDependants.size()); } else { bool fCheckResult = entry->GetTx().IsCoinBase() || Consensus::CheckTxInputs(entry->GetTx(), state, mempoolDuplicate, nSpendHeight, Params().GetConsensus()); assert(fCheckResult); UpdateCoins(entry->GetTx(), mempoolDuplicate, 1000000); stepsSinceLastRemove = 0; } } for (std::map::const_iterator it = mapNextTx.begin(); it != mapNextTx.end(); it++) { uint256 hash = it->second.ptx->GetHash(); indexed_transaction_set::const_iterator it2 = mapTx.find(hash); const CTransaction& tx = it2->GetTx(); assert(it2 != mapTx.end()); assert(&tx == it->second.ptx); assert(tx.vin.size() > it->second.n); assert(it->first == it->second.ptx->vin[it->second.n].prevout); } checkNullifiers(SPROUT); checkNullifiers(SAPLING); assert(totalTxSize == checkTotal); assert(innerUsage == cachedInnerUsage); } void CTxMemPool::checkNullifiers(ShieldedType type) const { const std::map* mapToUse; switch (type) { case SPROUT: mapToUse = &mapSproutNullifiers; break; case SAPLING: mapToUse = &mapSaplingNullifiers; break; default: throw runtime_error("Unknown nullifier type"); } for (const auto& entry : *mapToUse) { uint256 hash = entry.second->GetHash(); CTxMemPool::indexed_transaction_set::const_iterator findTx = mapTx.find(hash); const CTransaction& tx = findTx->GetTx(); assert(findTx != mapTx.end()); assert(&tx == entry.second); } } void CTxMemPool::queryHashes(vector& vtxid) { vtxid.clear(); LOCK(cs); vtxid.reserve(mapTx.size()); for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) vtxid.push_back(mi->GetTx().GetHash()); } bool CTxMemPool::lookup(uint256 hash, CTransaction& result) const { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hash); if (i == mapTx.end()) return false; result = i->GetTx(); return true; } CFeeRate CTxMemPool::estimateFee(int nBlocks) const { LOCK(cs); return minerPolicyEstimator->estimateFee(nBlocks); } double CTxMemPool::estimatePriority(int nBlocks) const { LOCK(cs); return minerPolicyEstimator->estimatePriority(nBlocks); } bool CTxMemPool::WriteFeeEstimates(CAutoFile& fileout) const { try { LOCK(cs); fileout << 109900; // version required to read: 0.10.99 or later fileout << CLIENT_VERSION; // version that wrote the file minerPolicyEstimator->Write(fileout); } catch (const std::exception&) { LogPrintf("CTxMemPool::WriteFeeEstimates(): unable to write policy estimator data (non-fatal)\n"); return false; } return true; } bool CTxMemPool::ReadFeeEstimates(CAutoFile& filein) { try { int nVersionRequired, nVersionThatWrote; filein >> nVersionRequired >> nVersionThatWrote; if (nVersionRequired > CLIENT_VERSION) return error("CTxMemPool::ReadFeeEstimates(): up-version (%d) fee estimate file", nVersionRequired); LOCK(cs); minerPolicyEstimator->Read(filein); } catch (const std::exception&) { LogPrintf("CTxMemPool::ReadFeeEstimates(): unable to read policy estimator data (non-fatal)\n"); return false; } return true; } void CTxMemPool::PrioritiseTransaction(const uint256 hash, const string strHash, double dPriorityDelta, const CAmount& nFeeDelta) { { LOCK(cs); std::pair &deltas = mapDeltas[hash]; deltas.first += dPriorityDelta; deltas.second += nFeeDelta; } LogPrintf("PrioritiseTransaction: %s priority += %f, fee += %d\n", strHash, dPriorityDelta, FormatMoney(nFeeDelta)); } void CTxMemPool::ApplyDeltas(const uint256 hash, double &dPriorityDelta, CAmount &nFeeDelta) { LOCK(cs); std::map >::iterator pos = mapDeltas.find(hash); if (pos == mapDeltas.end()) return; const std::pair &deltas = pos->second; dPriorityDelta += deltas.first; nFeeDelta += deltas.second; } void CTxMemPool::ClearPrioritisation(const uint256 hash) { LOCK(cs); mapDeltas.erase(hash); } bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const { for (unsigned int i = 0; i < tx.vin.size(); i++) if (exists(tx.vin[i].prevout.hash)) return false; return true; } bool CTxMemPool::nullifierExists(const uint256& nullifier, ShieldedType type) const { switch (type) { case SPROUT: return mapSproutNullifiers.count(nullifier); case SAPLING: return mapSaplingNullifiers.count(nullifier); default: throw runtime_error("Unknown nullifier type"); } } std::pair, uint64_t> CTxMemPool::DrainRecentlyAdded() { uint64_t recentlyAddedSequence; std::vector txs; { LOCK(cs); recentlyAddedSequence = nRecentlyAddedSequence; for (const auto& kv : mapRecentlyAddedTx) { txs.push_back(*(kv.second)); } mapRecentlyAddedTx.clear(); } return std::make_pair(txs, recentlyAddedSequence); } void CTxMemPool::SetNotifiedSequence(uint64_t recentlyAddedSequence) { assert(Params().NetworkIDString() == "regtest"); LOCK(cs); nNotifiedSequence = recentlyAddedSequence; } bool CTxMemPool::IsFullyNotified() { assert(Params().NetworkIDString() == "regtest"); LOCK(cs); return nRecentlyAddedSequence == nNotifiedSequence; } std::map CTxMemPool::getNullifiers() { return mapSaplingNullifiers; } CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView *baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { } bool CCoinsViewMemPool::GetNullifier(const uint256 &nf, ShieldedType type) const { return mempool.nullifierExists(nf, type) || base->GetNullifier(nf, type); } bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) const { // If an entry in the mempool exists, always return that one, as it's guaranteed to never // conflict with the underlying cache, and it cannot have pruned entries (as it contains full) // transactions. First checking the underlying cache risks returning a pruned entry instead. CTransaction tx; if (mempool.lookup(txid, tx)) { coins = CCoins(tx, MEMPOOL_HEIGHT); return true; } return (base->GetCoins(txid, coins) && !coins.IsPruned()); } bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) const { return mempool.exists(txid) || base->HaveCoins(txid); } size_t CTxMemPool::DynamicMemoryUsage() const { LOCK(cs); // Estimate the overhead of mapTx to be 6 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented. return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 6 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + cachedInnerUsage; }