Hush Full Node software. We were censored from Github, this is where all development happens now. https://hush.is
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

660 lines
25 KiB

// Copyright (c) 2012-2014 The Bitcoin Core developers
// Copyright (c) 2016-2024 The Hush developers
// Distributed under the GPLv3 software license, see the accompanying
// file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html
/******************************************************************************
* Copyright © 2014-2019 The SuperNET Developers. *
* *
* See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
* the top-level directory of this distribution for the individual copyright *
* holder information and the developer policies on copyright and licensing. *
* *
* Unless otherwise agreed in a custom licensing agreement, no part of the *
* SuperNET software, including this file may be copied, modified, propagated *
* or distributed except according to the terms contained in the LICENSE file *
* *
* Removal or modification of this copyright notice is prohibited. *
* *
******************************************************************************/
#include "coins.h"
#include "memusage.h"
#include "random.h"
#include "version.h"
#include "policy/fees.h"
#include "hush_defs.h"
#include "importcoin.h"
#include <assert.h>
#include "util.h"
extern bool fZdebug;
/**
* calculate number of bytes for the bitmask, and its number of non-zero bytes
* each bit in the bitmask represents the availability of one output, but the
* availabilities of the first two outputs are encoded separately
*/
void CCoins::CalcMaskSize(unsigned int &nBytes, unsigned int &nNonzeroBytes) const {
unsigned int nLastUsedByte = 0;
for (unsigned int b = 0; 2+b*8 < vout.size(); b++) {
bool fZero = true;
for (unsigned int i = 0; i < 8 && 2+b*8+i < vout.size(); i++) {
if (!vout[2+b*8+i].IsNull()) {
fZero = false;
continue;
}
}
if (!fZero) {
nLastUsedByte = b + 1;
nNonzeroBytes++;
}
}
nBytes += nLastUsedByte;
}
CNullifiersMap CCoinsViewCache::getNullifiers()
{
return cacheSaplingNullifiers;
}
bool CCoins::Spend(uint32_t nPos)
{
if (nPos >= vout.size() || vout[nPos].IsNull())
return false;
vout[nPos].SetNull();
Cleanup();
return true;
}
bool CCoinsView::GetSaplingAnchorAt(const uint256 &rt, SaplingMerkleTree &tree) const { return false; }
bool CCoinsView::GetNullifier(const uint256 &nullifier, ShieldedType type) const { return false; }
bool CCoinsView::GetCoins(const uint256 &txid, CCoins &coins) const { return false; }
bool CCoinsView::HaveCoins(const uint256 &txid) const { return false; }
uint256 CCoinsView::GetBestBlock() const { return uint256(); }
uint256 CCoinsView::GetBestAnchor(ShieldedType type) const { return uint256(); };
bool CCoinsView::BatchWrite(CCoinsMap &mapCoins,
const uint256 &hashBlock,
const uint256 &hashSproutAnchor,
const uint256 &hashSaplingAnchor,
CAnchorsSproutMap &mapSproutAnchors,
CAnchorsSaplingMap &mapSaplingAnchors,
CNullifiersMap &mapSproutNullifiers,
CNullifiersMap &mapSaplingNullifiers) { return false; }
bool CCoinsView::GetStats(CCoinsStats &stats) const { return false; }
CCoinsViewBacked::CCoinsViewBacked(CCoinsView *viewIn) : base(viewIn) { }
bool CCoinsViewBacked::GetSaplingAnchorAt(const uint256 &rt, SaplingMerkleTree &tree) const { return base->GetSaplingAnchorAt(rt, tree); }
bool CCoinsViewBacked::GetNullifier(const uint256 &nullifier, ShieldedType type) const { return base->GetNullifier(nullifier, type); }
bool CCoinsViewBacked::GetCoins(const uint256 &txid, CCoins &coins) const { return base->GetCoins(txid, coins); }
bool CCoinsViewBacked::HaveCoins(const uint256 &txid) const { return base->HaveCoins(txid); }
uint256 CCoinsViewBacked::GetBestBlock() const { return base->GetBestBlock(); }
uint256 CCoinsViewBacked::GetBestAnchor(ShieldedType type) const { return base->GetBestAnchor(type); }
void CCoinsViewBacked::SetBackend(CCoinsView &viewIn) { base = &viewIn; }
bool CCoinsViewBacked::BatchWrite(CCoinsMap &mapCoins,
const uint256 &hashBlock,
const uint256 &hashSproutAnchor,
const uint256 &hashSaplingAnchor,
CAnchorsSproutMap &mapSproutAnchors,
CAnchorsSaplingMap &mapSaplingAnchors,
CNullifiersMap &mapSproutNullifiers,
CNullifiersMap &mapSaplingNullifiers) { return base->BatchWrite(mapCoins, hashBlock, hashSproutAnchor, hashSaplingAnchor, mapSproutAnchors, mapSaplingAnchors, mapSproutNullifiers, mapSaplingNullifiers); }
bool CCoinsViewBacked::GetStats(CCoinsStats &stats) const { return base->GetStats(stats); }
CCoinsKeyHasher::CCoinsKeyHasher() : salt(GetRandHash()) {}
CCoinsViewCache::CCoinsViewCache(CCoinsView *baseIn) : CCoinsViewBacked(baseIn), hasModifier(false), cachedCoinsUsage(0) { }
CCoinsViewCache::~CCoinsViewCache()
{
assert(!hasModifier);
}
size_t CCoinsViewCache::DynamicMemoryUsage() const {
return memusage::DynamicUsage(cacheCoins) +
memusage::DynamicUsage(cacheSaplingAnchors) +
memusage::DynamicUsage(cacheSaplingNullifiers) +
cachedCoinsUsage;
}
CCoinsMap::const_iterator CCoinsViewCache::FetchCoins(const uint256 &txid) const {
CCoinsMap::iterator it = cacheCoins.find(txid);
if (it != cacheCoins.end())
return it;
CCoins tmp;
if (!base->GetCoins(txid, tmp))
return cacheCoins.end();
CCoinsMap::iterator ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry())).first;
tmp.swap(ret->second.coins);
if (ret->second.coins.IsPruned()) {
// The parent only has an empty entry for this txid; we can consider our
// version as fresh.
ret->second.flags = CCoinsCacheEntry::FRESH;
}
cachedCoinsUsage += ret->second.coins.DynamicMemoryUsage();
return ret;
}
bool CCoinsViewCache::GetSaplingAnchorAt(const uint256 &rt, SaplingMerkleTree &tree) const {
CAnchorsSaplingMap::const_iterator it = cacheSaplingAnchors.find(rt);
if (it != cacheSaplingAnchors.end()) {
if (it->second.entered) {
tree = it->second.tree;
return true;
} else {
return false;
}
}
if (!base->GetSaplingAnchorAt(rt, tree)) {
return false;
}
CAnchorsSaplingMap::iterator ret = cacheSaplingAnchors.insert(std::make_pair(rt, CAnchorsSaplingCacheEntry())).first;
ret->second.entered = true;
ret->second.tree = tree;
cachedCoinsUsage += ret->second.tree.DynamicMemoryUsage();
return true;
}
bool CCoinsViewCache::GetNullifier(const uint256 &nullifier, ShieldedType type) const {
CNullifiersMap* cacheToUse;
// SAPLING is the only current supported type but we may
// have more in The Future
switch (type) {
case SAPLING:
cacheToUse = &cacheSaplingNullifiers;
break;
default:
throw std::runtime_error("Unknown shielded type");
}
CNullifiersMap::iterator it = cacheToUse->find(nullifier);
if (it != cacheToUse->end())
return it->second.entered;
CNullifiersCacheEntry entry;
bool tmp = base->GetNullifier(nullifier, type);
entry.entered = tmp;
cacheToUse->insert(std::make_pair(nullifier, entry));
return tmp;
}
template<typename Tree, typename Cache, typename CacheIterator, typename CacheEntry>
void CCoinsViewCache::AbstractPushAnchor(
const Tree &tree,
ShieldedType type,
Cache &cacheAnchors,
uint256 &hash
)
{
uint256 newrt = tree.root();
auto currentRoot = GetBestAnchor(type);
// We don't want to overwrite an anchor we already have.
// This occurs when a block doesn't modify mapAnchors at all,
// because there are no ShieldedSpends. We could get around this a
// different way (make all blocks modify mapAnchors somehow)
// but this is simpler to reason about.
if (currentRoot != newrt) {
auto insertRet = cacheAnchors.insert(std::make_pair(newrt, CacheEntry()));
CacheIterator ret = insertRet.first;
ret->second.entered = true;
ret->second.tree = tree;
ret->second.flags = CacheEntry::DIRTY;
if (insertRet.second) {
// An insert took place
cachedCoinsUsage += ret->second.tree.DynamicMemoryUsage();
}
hash = newrt;
}
}
//TODO: delete
/*
template<> void CCoinsViewCache::PushAnchor(const SproutMerkleTree &tree)
{
AbstractPushAnchor<SproutMerkleTree, CAnchorsSproutMap, CAnchorsSproutMap::iterator, CAnchorsSproutCacheEntry>(
tree,
SPROUT,
cacheSproutAnchors,
hashSproutAnchor
);
}
*/
template<> void CCoinsViewCache::PushAnchor(const SaplingMerkleTree &tree)
{
AbstractPushAnchor<SaplingMerkleTree, CAnchorsSaplingMap, CAnchorsSaplingMap::iterator, CAnchorsSaplingCacheEntry>(
tree,
SAPLING,
cacheSaplingAnchors,
hashSaplingAnchor
);
}
template<>
void CCoinsViewCache::BringBestAnchorIntoCache(
const uint256 &currentRoot,
SproutMerkleTree &tree
)
{
}
template<>
void CCoinsViewCache::BringBestAnchorIntoCache(
const uint256 &currentRoot,
SaplingMerkleTree &tree
)
{
assert(GetSaplingAnchorAt(currentRoot, tree));
}
template<typename Tree, typename Cache, typename CacheEntry>
void CCoinsViewCache::AbstractPopAnchor(
const uint256 &newrt,
ShieldedType type,
Cache &cacheAnchors,
uint256 &hash
)
{
auto currentRoot = GetBestAnchor(type);
// Blocks might not change the commitment tree, in which
// case restoring the "old" anchor during a reorg must
// have no effect.
if (currentRoot != newrt) {
// Bring the current best anchor into our local cache
// so that its tree exists in memory.
{
Tree tree;
BringBestAnchorIntoCache(currentRoot, tree);
}
// Mark the anchor as unentered, removing it from view
cacheAnchors[currentRoot].entered = false;
// Mark the cache entry as dirty so it's propagated
cacheAnchors[currentRoot].flags = CacheEntry::DIRTY;
// Mark the new root as the best anchor
hash = newrt;
}
}
void CCoinsViewCache::PopAnchor(const uint256 &newrt, ShieldedType type) {
switch (type) {
case SPROUT:
AbstractPopAnchor<SproutMerkleTree, CAnchorsSproutMap, CAnchorsSproutCacheEntry>(
newrt,
SPROUT,
cacheSproutAnchors,
hashSproutAnchor
);
break;
case SAPLING:
AbstractPopAnchor<SaplingMerkleTree, CAnchorsSaplingMap, CAnchorsSaplingCacheEntry>(
newrt,
SAPLING,
cacheSaplingAnchors,
hashSaplingAnchor
);
break;
default:
throw std::runtime_error("Unknown shielded type");
}
}
void CCoinsViewCache::SetNullifiers(const CTransaction& tx, bool spent) {
for (const SpendDescription &spendDescription : tx.vShieldedSpend) {
std::pair<CNullifiersMap::iterator, bool> ret = cacheSaplingNullifiers.insert(std::make_pair(spendDescription.nullifier, CNullifiersCacheEntry()));
ret.first->second.entered = spent;
ret.first->second.flags |= CNullifiersCacheEntry::DIRTY;
if (fZdebug)
LogPrintf("%s: Inserted spent=%d nullifier=%s into Sapling nullifier cache\n", __FUNCTION__, spent, spendDescription.nullifier.GetHex().c_str());
}
}
bool CCoinsViewCache::GetCoins(const uint256 &txid, CCoins &coins) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
if (it != cacheCoins.end()) {
coins = it->second.coins;
return true;
}
return false;
}
CCoinsModifier CCoinsViewCache::ModifyCoins(const uint256 &txid) {
assert(!hasModifier);
std::pair<CCoinsMap::iterator, bool> ret = cacheCoins.insert(std::make_pair(txid, CCoinsCacheEntry()));
size_t cachedCoinUsage = 0;
if (ret.second) {
if (!base->GetCoins(txid, ret.first->second.coins)) {
// The parent view does not have this entry; mark it as fresh.
ret.first->second.coins.Clear();
ret.first->second.flags = CCoinsCacheEntry::FRESH;
} else if (ret.first->second.coins.IsPruned()) {
// The parent view only has a pruned entry for this; mark it as fresh.
ret.first->second.flags = CCoinsCacheEntry::FRESH;
}
} else {
cachedCoinUsage = ret.first->second.coins.DynamicMemoryUsage();
}
// Assume that whenever ModifyCoins is called, the entry will be modified.
ret.first->second.flags |= CCoinsCacheEntry::DIRTY;
return CCoinsModifier(*this, ret.first, cachedCoinUsage);
}
const CCoins* CCoinsViewCache::AccessCoins(const uint256 &txid) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
if (it == cacheCoins.end()) {
return NULL;
} else {
return &it->second.coins;
}
}
bool CCoinsViewCache::HaveCoins(const uint256 &txid) const {
CCoinsMap::const_iterator it = FetchCoins(txid);
// We're using vtx.empty() instead of IsPruned here for performance reasons,
// as we only care about the case where a transaction was replaced entirely
// in a reorganization (which wipes vout entirely, as opposed to spending
// which just cleans individual outputs).
return (it != cacheCoins.end() && !it->second.coins.vout.empty());
}
uint256 CCoinsViewCache::GetBestBlock() const {
if (hashBlock.IsNull())
{
if (base)
{
hashBlock = base->GetBestBlock();
}
else
{
hashBlock = uint256();
}
}
return hashBlock;
}
uint256 CCoinsViewCache::GetBestAnchor(ShieldedType type) const {
switch (type) {
case SPROUT:
if (hashSproutAnchor.IsNull())
hashSproutAnchor = base->GetBestAnchor(type);
return hashSproutAnchor;
break;
case SAPLING:
if (hashSaplingAnchor.IsNull())
hashSaplingAnchor = base->GetBestAnchor(type);
return hashSaplingAnchor;
break;
default:
throw std::runtime_error("Unknown shielded type");
}
}
void CCoinsViewCache::SetBestBlock(const uint256 &hashBlockIn) {
hashBlock = hashBlockIn;
}
void BatchWriteNullifiers(CNullifiersMap &mapNullifiers, CNullifiersMap &cacheNullifiers)
{
//if(fZdebug)
// LogPrintf("%s\n", __FUNCTION__);
for (CNullifiersMap::iterator child_it = mapNullifiers.begin(); child_it != mapNullifiers.end();) {
if (child_it->second.flags & CNullifiersCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization).
CNullifiersMap::iterator parent_it = cacheNullifiers.find(child_it->first);
if (parent_it == cacheNullifiers.end()) {
CNullifiersCacheEntry& entry = cacheNullifiers[child_it->first];
entry.entered = child_it->second.entered;
entry.flags = CNullifiersCacheEntry::DIRTY;
} else {
if (parent_it->second.entered != child_it->second.entered) {
parent_it->second.entered = child_it->second.entered;
parent_it->second.flags |= CNullifiersCacheEntry::DIRTY;
}
}
}
CNullifiersMap::iterator itOld = child_it++;
mapNullifiers.erase(itOld);
}
}
template<typename Map, typename MapIterator, typename MapEntry>
void BatchWriteAnchors(
Map &mapAnchors,
Map &cacheAnchors,
size_t &cachedCoinsUsage
)
{
for (MapIterator child_it = mapAnchors.begin(); child_it != mapAnchors.end();)
{
if (child_it->second.flags & MapEntry::DIRTY) {
MapIterator parent_it = cacheAnchors.find(child_it->first);
if (parent_it == cacheAnchors.end()) {
MapEntry& entry = cacheAnchors[child_it->first];
entry.entered = child_it->second.entered;
entry.tree = child_it->second.tree;
entry.flags = MapEntry::DIRTY;
cachedCoinsUsage += entry.tree.DynamicMemoryUsage();
} else {
if (parent_it->second.entered != child_it->second.entered) {
// The parent may have removed the entry.
parent_it->second.entered = child_it->second.entered;
parent_it->second.flags |= MapEntry::DIRTY;
}
}
}
MapIterator itOld = child_it++;
mapAnchors.erase(itOld);
}
}
bool CCoinsViewCache::BatchWrite(CCoinsMap &mapCoins,
const uint256 &hashBlockIn,
const uint256 &hashSproutAnchorIn,
const uint256 &hashSaplingAnchorIn,
CAnchorsSproutMap &mapSproutAnchors,
CAnchorsSaplingMap &mapSaplingAnchors,
CNullifiersMap &mapSproutNullifiers,
CNullifiersMap &mapSaplingNullifiers) {
assert(!hasModifier);
for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) {
if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Ignore non-dirty entries (optimization).
CCoinsMap::iterator itUs = cacheCoins.find(it->first);
if (itUs == cacheCoins.end()) {
if (!it->second.coins.IsPruned()) {
// The parent cache does not have an entry, while the child
// cache does have (a non-pruned) one. Move the data up, and
// mark it as fresh (if the grandparent did have it, we
// would have pulled it in at first GetCoins).
assert(it->second.flags & CCoinsCacheEntry::FRESH);
CCoinsCacheEntry& entry = cacheCoins[it->first];
entry.coins.swap(it->second.coins);
cachedCoinsUsage += entry.coins.DynamicMemoryUsage();
entry.flags = CCoinsCacheEntry::DIRTY | CCoinsCacheEntry::FRESH;
}
} else {
if ((itUs->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) {
// The grandparent does not have an entry, and the child is
// modified and being pruned. This means we can just delete
// it from the parent.
cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage();
cacheCoins.erase(itUs);
} else {
// A normal modification.
cachedCoinsUsage -= itUs->second.coins.DynamicMemoryUsage();
itUs->second.coins.swap(it->second.coins);
cachedCoinsUsage += itUs->second.coins.DynamicMemoryUsage();
itUs->second.flags |= CCoinsCacheEntry::DIRTY;
}
}
}
CCoinsMap::iterator itOld = it++;
mapCoins.erase(itOld);
}
::BatchWriteAnchors<CAnchorsSaplingMap, CAnchorsSaplingMap::iterator, CAnchorsSaplingCacheEntry>(mapSaplingAnchors, cacheSaplingAnchors, cachedCoinsUsage);
::BatchWriteNullifiers(mapSaplingNullifiers, cacheSaplingNullifiers);
hashSproutAnchor = hashSproutAnchorIn;
hashSaplingAnchor = hashSaplingAnchorIn;
hashBlock = hashBlockIn;
return true;
}
bool CCoinsViewCache::Flush() {
bool fOk = base->BatchWrite(cacheCoins, hashBlock, hashSproutAnchor, hashSaplingAnchor, cacheSproutAnchors, cacheSaplingAnchors, cacheSproutNullifiers, cacheSaplingNullifiers);
cacheCoins.clear();
cacheSaplingAnchors.clear();
cacheSaplingNullifiers.clear();
cachedCoinsUsage = 0;
return fOk;
}
unsigned int CCoinsViewCache::GetCacheSize() const {
return cacheCoins.size();
}
const CTxOut &CCoinsViewCache::GetOutputFor(const CTxIn& input) const
{
const CCoins* coins = AccessCoins(input.prevout.hash);
//fprintf(stderr, "GetOutputFor: input=%s", input.ToString().c_str());
//fprintf(stderr, "GetOutputFor: prevout n=%d,txid=%s\n", input.prevout.n, input.prevout.hash.ToString().c_str());
assert(coins && coins->IsAvailable(input.prevout.n));
//fprintf(stderr, "GetOutputFor: IsAvailable\n");
return coins->vout[input.prevout.n];
}
extern char SMART_CHAIN_SYMBOL[HUSH_SMART_CHAIN_MAXLEN];
const CScript &CCoinsViewCache::GetSpendFor(const CCoins *coins, const CTxIn& input)
{
assert(coins);
return coins->vout[input.prevout.n].scriptPubKey;
}
const CScript &CCoinsViewCache::GetSpendFor(const CTxIn& input) const
{
const CCoins* coins = AccessCoins(input.prevout.hash);
return GetSpendFor(coins, input);
}
CAmount CCoinsViewCache::GetValueIn(int32_t nHeight,int64_t *interestp,const CTransaction& tx,uint32_t tiptime) const
{
CAmount value,nResult = 0;
if ( interestp != 0 )
*interestp = 0;
//if ( tx.IsCoinImport() )
// return GetCoinImportValue(tx);
if ( tx.IsCoinBase() != 0 )
return 0;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
//if (tx.IsPegsImport() && i==0)
//{
// nResult = GetCoinImportValue(tx);
// continue;
//}
value = GetOutputFor(tx.vin[i]).nValue;
nResult += value;
}
nResult += tx.GetShieldedValueIn();
return nResult;
}
bool CCoinsViewCache::HaveShieldedRequirements(const CTransaction& tx) const
{
for (const SpendDescription &spendDescription : tx.vShieldedSpend) {
if (GetNullifier(spendDescription.nullifier, SAPLING)) { // Prevent double spends
LogPrintf("%s: sapling nullifier %s exists, preventing double spend in tx %s\n", __FUNCTION__, spendDescription.nullifier.GetHex().c_str(), tx.GetHash().GetHex().c_str());
return false;
}
SaplingMerkleTree tree;
if (!GetSaplingAnchorAt(spendDescription.anchor, tree)) {
LogPrintf("%s: missing sapling anchor: %s in tx %s \n", __FUNCTION__, spendDescription.anchor.GetHex().c_str(), tx.GetHash().GetHex().c_str());
return false;
}
}
return true;
}
bool CCoinsViewCache::HaveInputs(const CTransaction& tx) const
{
if (!tx.IsMint()) {
for (unsigned int i = 0; i < tx.vin.size(); i++) {
if (tx.IsPegsImport() && i==0) continue;
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins* coins = AccessCoins(prevout.hash);
if (!coins || !coins->IsAvailable(prevout.n)) {
//fprintf(stderr,"HaveInputs missing input %s/v%d\n",prevout.hash.ToString().c_str(),prevout.n);
return false;
}
}
}
return true;
}
double CCoinsViewCache::GetPriority(const CTransaction &tx, int nHeight) const
{
if (tx.IsCoinBase())
return 0.0;
// Shielded transfers do not reveal any information about the value or age of a note, so we
// cannot apply the priority algorithm used for transparent utxos. Instead, we just
// use the maximum priority for all (partially or fully) shielded transactions.
// (Note that coinbase transactions cannot contain Sapling shielded Spends or Outputs.)
if (tx.vShieldedSpend.size() > 0 || tx.vShieldedOutput.size() > 0 || tx.IsCoinImport() || tx.IsPegsImport()) {
return MAX_PRIORITY;
}
// FIXME: this logic is partially duplicated between here and CreateNewBlock in miner.cpp.
double dResult = 0.0;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
const CCoins* coins = AccessCoins(txin.prevout.hash);
assert(coins);
if (!coins->IsAvailable(txin.prevout.n)) continue;
if (coins->nHeight < nHeight) {
dResult += coins->vout[txin.prevout.n].nValue * (nHeight-coins->nHeight);
}
}
return tx.ComputePriority(dResult);
}
CCoinsModifier::CCoinsModifier(CCoinsViewCache& cache_, CCoinsMap::iterator it_, size_t usage) : cache(cache_), it(it_), cachedCoinUsage(usage) {
assert(!cache.hasModifier);
cache.hasModifier = true;
}
CCoinsModifier::~CCoinsModifier()
{
assert(cache.hasModifier);
cache.hasModifier = false;
it->second.coins.Cleanup();
cache.cachedCoinsUsage -= cachedCoinUsage; // Subtract the old usage
if ((it->second.flags & CCoinsCacheEntry::FRESH) && it->second.coins.IsPruned()) {
cache.cacheCoins.erase(it);
} else {
// If the coin still exists after the modification, add the new usage
cache.cachedCoinsUsage += it->second.coins.DynamicMemoryUsage();
}
}