Hush Full Node software. We were censored from Github, this is where all development happens now. https://hush.is
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

839 lines
30 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Copyright (c) 2016-2024 The Hush developers
// Distributed under the GPLv3 software license, see the accompanying
// file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html
/******************************************************************************
* Copyright © 2014-2019 The SuperNET Developers. *
* *
* See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
* the top-level directory of this distribution for the individual copyright *
* holder information and the developer policies on copyright and licensing. *
* *
* Unless otherwise agreed in a custom licensing agreement, no part of the *
* SuperNET software, including this file may be copied, modified, propagated *
* or distributed except according to the terms contained in the LICENSE file *
* *
* Removal or modification of this copyright notice is prohibited. *
* *
******************************************************************************/
#include "txmempool.h"
#include "clientversion.h"
#include "consensus/consensus.h"
#include "consensus/validation.h"
#include "main.h"
#include "policy/fees.h"
#include "streams.h"
#include "timedata.h"
#include "util.h"
#include "utilmoneystr.h"
#include "validationinterface.h"
#include "version.h"
#define _COINBASE_MATURITY 100
using namespace std;
CTxMemPoolEntry::CTxMemPoolEntry():
nFee(0), nTxSize(0), nModSize(0), nUsageSize(0), nTime(0), dPriority(0.0),
hadNoDependencies(false), spendsCoinbase(false)
{
nHeight = MEMPOOL_HEIGHT;
}
CTxMemPoolEntry::CTxMemPoolEntry(const CTransaction& _tx, const CAmount& _nFee,
int64_t _nTime, double _dPriority,
unsigned int _nHeight, bool poolHasNoInputsOf,
bool _spendsCoinbase, uint32_t _nBranchId):
tx(_tx), nFee(_nFee), nTime(_nTime), dPriority(_dPriority), nHeight(_nHeight),
hadNoDependencies(poolHasNoInputsOf),
spendsCoinbase(_spendsCoinbase), nBranchId(_nBranchId)
{
nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
nModSize = tx.CalculateModifiedSize(nTxSize);
nUsageSize = RecursiveDynamicUsage(tx);
feeRate = CFeeRate(nFee, nTxSize);
}
CTxMemPoolEntry::CTxMemPoolEntry(const CTxMemPoolEntry& other)
{
*this = other;
}
double
CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const
{
CAmount nValueIn = tx.GetValueOut()+nFee;
double deltaPriority = ((double)(currentHeight-nHeight)*nValueIn)/nModSize;
double dResult = dPriority + deltaPriority;
return dResult;
}
CTxMemPool::CTxMemPool(const CFeeRate& _minRelayFee) :
nTransactionsUpdated(0)
{
// Sanity checks off by default for performance, because otherwise
// accepting transactions becomes O(N^2) where N is the number
// of transactions in the pool
nCheckFrequency = 0;
minerPolicyEstimator = new CBlockPolicyEstimator(_minRelayFee);
}
CTxMemPool::~CTxMemPool()
{
delete minerPolicyEstimator;
}
void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins)
{
LOCK(cs);
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0));
// iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx
while (it != mapNextTx.end() && it->first.hash == hashTx) {
coins.Spend(it->first.n); // and remove those outputs from coins
it++;
}
}
unsigned int CTxMemPool::GetTransactionsUpdated() const
{
LOCK(cs);
return nTransactionsUpdated;
}
void CTxMemPool::AddTransactionsUpdated(unsigned int n)
{
LOCK(cs);
nTransactionsUpdated += n;
}
bool CTxMemPool::addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry, bool fCurrentEstimate)
{
// Add to memory pool without checking anything.
// Used by main.cpp AcceptToMemoryPool(), which DOES do
// all the appropriate checks.
LOCK(cs);
mapTx.insert(entry);
const CTransaction& tx = mapTx.find(hash)->GetTx();
mapRecentlyAddedTx[tx.GetHash()] = &tx;
nRecentlyAddedSequence += 1;
if (!tx.IsCoinImport()) {
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
if (tx.IsPegsImport() && i==0) continue;
mapNextTx[tx.vin[i].prevout] = CInPoint(&tx, i);
}
}
for (const SpendDescription &spendDescription : tx.vShieldedSpend) {
mapSaplingNullifiers[spendDescription.nullifier] = &tx;
}
nTransactionsUpdated++;
totalTxSize += entry.GetTxSize();
cachedInnerUsage += entry.DynamicMemoryUsage();
minerPolicyEstimator->processTransaction(entry, fCurrentEstimate);
return true;
}
void CTxMemPool::addAddressIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view)
{
LOCK(cs);
const CTransaction& tx = entry.GetTx();
std::vector<CMempoolAddressDeltaKey> inserted;
uint256 txhash = tx.GetHash();
for (unsigned int j = 0; j < tx.vin.size(); j++) {
if (tx.IsPegsImport() && j==0) continue;
const CTxIn input = tx.vin[j];
const CTxOut &prevout = view.GetOutputFor(input);
vector<vector<unsigned char>> vSols;
txnouttype txType = TX_PUBKEYHASH;
int keyType = 1;
CTxDestination vDest;
if (Solver(prevout.scriptPubKey, txType, vSols) || ExtractDestination(prevout.scriptPubKey, vDest))
{
if (vDest.which())
{
uint160 hashBytes;
if (CBitcoinAddress(vDest).GetIndexKey(hashBytes, keyType, prevout.scriptPubKey.IsPayToCryptoCondition()))
{
vSols.push_back(vector<unsigned char>(hashBytes.begin(), hashBytes.end()));
}
}
if (txType == TX_SCRIPTHASH)
{
keyType = 2;
}
for (auto addr : vSols)
{
CMempoolAddressDeltaKey key(keyType, addr.size() == 20 ? uint160(addr) : Hash160(addr), txhash, j, true);
CMempoolAddressDelta delta(entry.GetTime(), prevout.nValue * -1, input.prevout.hash, input.prevout.n);
mapAddress.insert(make_pair(key, delta));
inserted.push_back(key);
}
}
}
for (unsigned int k = 0; k < tx.vout.size(); k++) {
const CTxOut &out = tx.vout[k];
vector<vector<unsigned char>> vSols;
CTxDestination vDest;
txnouttype txType = TX_PUBKEYHASH;
int keyType = 1;
if ((Solver(out.scriptPubKey, txType, vSols) || ExtractDestination(out.scriptPubKey, vDest)) && txType != TX_MULTISIG)
{
// if we failed to solve, and got a vDest, assume P2PKH or P2PK address returned
if (vDest.which())
{
uint160 hashBytes;
if (CBitcoinAddress(vDest).GetIndexKey(hashBytes, keyType, out.scriptPubKey.IsPayToCryptoCondition()))
{
vSols.push_back(vector<unsigned char>(hashBytes.begin(), hashBytes.end()));
}
}
else if (txType == TX_SCRIPTHASH)
{
keyType = 2;
}
for (auto addr : vSols)
{
CMempoolAddressDeltaKey key(keyType, addr.size() == 20 ? uint160(addr) : Hash160(addr), txhash, k, 0);
mapAddress.insert(make_pair(key, CMempoolAddressDelta(entry.GetTime(), out.nValue)));
inserted.push_back(key);
}
}
}
mapAddressInserted.insert(make_pair(txhash, inserted));
}
bool CTxMemPool::getAddressIndex(std::vector<std::pair<uint160, int> > &addresses,
std::vector<std::pair<CMempoolAddressDeltaKey, CMempoolAddressDelta> > &results)
{
LOCK(cs);
for (std::vector<std::pair<uint160, int> >::iterator it = addresses.begin(); it != addresses.end(); it++) {
addressDeltaMap::iterator ait = mapAddress.lower_bound(CMempoolAddressDeltaKey((*it).second, (*it).first));
while (ait != mapAddress.end() && (*ait).first.addressBytes == (*it).first && (*ait).first.type == (*it).second) {
results.push_back(*ait);
ait++;
}
}
return true;
}
bool CTxMemPool::removeAddressIndex(const uint256 txhash)
{
LOCK(cs);
addressDeltaMapInserted::iterator it = mapAddressInserted.find(txhash);
if (it != mapAddressInserted.end()) {
std::vector<CMempoolAddressDeltaKey> keys = (*it).second;
for (std::vector<CMempoolAddressDeltaKey>::iterator mit = keys.begin(); mit != keys.end(); mit++) {
mapAddress.erase(*mit);
}
mapAddressInserted.erase(it);
}
return true;
}
void CTxMemPool::addSpentIndex(const CTxMemPoolEntry &entry, const CCoinsViewCache &view)
{
LOCK(cs);
const CTransaction& tx = entry.GetTx();
std::vector<CSpentIndexKey> inserted;
uint256 txhash = tx.GetHash();
for (unsigned int j = 0; j < tx.vin.size(); j++) {
if (tx.IsPegsImport() && j==0) continue;
const CTxIn input = tx.vin[j];
const CTxOut &prevout = view.GetOutputFor(input);
vector<vector<unsigned char>> vSols;
CTxDestination vDest;
txnouttype txType = TX_PUBKEYHASH;
int keyType = 1;
// some non-standard types, like time lock coinbases, don't solve, but do extract
if ((Solver(prevout.scriptPubKey, txType, vSols) || ExtractDestination(prevout.scriptPubKey, vDest)) && txType != TX_MULTISIG)
{
// if we failed to solve, and got a vDest, assume P2PKH or P2PK address returned
if (vDest.which())
{
CKeyID kid;
if (CBitcoinAddress(vDest).GetKeyID(kid))
{
vSols.push_back(vector<unsigned char>(kid.begin(), kid.end()));
}
}
else if (txType == TX_SCRIPTHASH)
{
keyType = 2;
}
for (auto addr : vSols)
{
CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n);
CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, keyType, addr.size() == 20 ? uint160(addr) : Hash160(addr));
mapSpent.insert(make_pair(key, value));
inserted.push_back(key);
}
}
else
{
// don't know exactly how, but it was spent
CSpentIndexKey key = CSpentIndexKey(input.prevout.hash, input.prevout.n);
CSpentIndexValue value = CSpentIndexValue(txhash, j, -1, prevout.nValue, 0, uint160());
mapSpent.insert(make_pair(key, value));
inserted.push_back(key);
}
}
mapSpentInserted.insert(make_pair(txhash, inserted));
}
bool CTxMemPool::getSpentIndex(CSpentIndexKey &key, CSpentIndexValue &value)
{
LOCK(cs);
mapSpentIndex::iterator it;
it = mapSpent.find(key);
if (it != mapSpent.end()) {
value = it->second;
return true;
}
return false;
}
bool CTxMemPool::removeSpentIndex(const uint256 txhash)
{
LOCK(cs);
mapSpentIndexInserted::iterator it = mapSpentInserted.find(txhash);
if (it != mapSpentInserted.end()) {
std::vector<CSpentIndexKey> keys = (*it).second;
for (std::vector<CSpentIndexKey>::iterator mit = keys.begin(); mit != keys.end(); mit++) {
mapSpent.erase(*mit);
}
mapSpentInserted.erase(it);
}
return true;
}
// Remove transaction from memory pool
void CTxMemPool::remove(const CTransaction &origTx, std::list<CTransaction>& removed, bool fRecursive) {
{
LOCK(cs);
std::deque<uint256> txToRemove;
txToRemove.push_back(origTx.GetHash());
if (fRecursive && !mapTx.count(origTx.GetHash())) {
// If recursively removing but origTx isn't in the mempool
// be sure to remove any children that are in the pool. This can
// happen during chain re-orgs if origTx isn't re-accepted into
// the mempool for any reason.
for (unsigned int i = 0; i < origTx.vout.size(); i++) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(COutPoint(origTx.GetHash(), i));
if (it == mapNextTx.end())
continue;
txToRemove.push_back(it->second.ptx->GetHash());
}
}
while (!txToRemove.empty())
{
uint256 hash = txToRemove.front();
txToRemove.pop_front();
if (!mapTx.count(hash))
continue;
const CTransaction& tx = mapTx.find(hash)->GetTx();
if (fRecursive) {
for (unsigned int i = 0; i < tx.vout.size(); i++) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(COutPoint(hash, i));
if (it == mapNextTx.end())
continue;
txToRemove.push_back(it->second.ptx->GetHash());
}
}
mapRecentlyAddedTx.erase(hash);
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapNextTx.erase(txin.prevout);
// remove each Sapling nullifier associated with this shielded spend
for (const SpendDescription &spendDescription : tx.vShieldedSpend) {
mapSaplingNullifiers.erase(spendDescription.nullifier);
}
removed.push_back(tx);
totalTxSize -= mapTx.find(hash)->GetTxSize();
cachedInnerUsage -= mapTx.find(hash)->DynamicMemoryUsage();
mapTx.erase(hash);
nTransactionsUpdated++;
minerPolicyEstimator->removeTx(hash);
removeAddressIndex(hash);
removeSpentIndex(hash);
}
}
}
extern uint64_t ASSETCHAINS_TIMELOCKGTE;
int64_t hush_block_unlocktime(uint32_t nHeight);
void CTxMemPool::removeForReorg(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight, int flags)
{
// Remove transactions spending a coinbase which are now immature
extern char SMART_CHAIN_SYMBOL[HUSH_SMART_CHAIN_MAXLEN];
if ( SMART_CHAIN_SYMBOL[0] == 0 )
COINBASE_MATURITY = _COINBASE_MATURITY;
// Remove transactions spending a coinbase which are now immature and no-longer-final transactions
LOCK(cs);
list<CTransaction> transactionsToRemove;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
const CTransaction& tx = it->GetTx();
if (!CheckFinalTx(tx, flags)) {
transactionsToRemove.push_back(tx);
} else if (it->GetSpendsCoinbase()) {
BOOST_FOREACH(const CTxIn& txin, tx.vin) {
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
if (it2 != mapTx.end())
continue;
const CCoins *coins = pcoins->AccessCoins(txin.prevout.hash);
if (nCheckFrequency != 0) assert(coins);
if (!coins || (coins->IsCoinBase() && (((signed long)nMemPoolHeight) - coins->nHeight < COINBASE_MATURITY) &&
((signed long)nMemPoolHeight < hush_block_unlocktime(coins->nHeight) &&
coins->IsAvailable(0) && coins->vout[0].nValue >= ASSETCHAINS_TIMELOCKGTE))) {
transactionsToRemove.push_back(tx);
break;
}
}
}
}
BOOST_FOREACH(const CTransaction& tx, transactionsToRemove) {
list<CTransaction> removed;
remove(tx, removed, true);
}
}
void CTxMemPool::removeWithAnchor(const uint256 &invalidRoot, ShieldedType type)
{
// If a block is disconnected from the tip, and the root changed,
// we must invalidate transactions from the mempool which spend
// from that root -- almost as though they were spending coinbases
// which are no longer valid to spend due to coinbase maturity.
LOCK(cs);
list<CTransaction> transactionsToRemove;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
const CTransaction& tx = it->GetTx();
switch (type) {
case SAPLING:
BOOST_FOREACH(const SpendDescription& spendDescription, tx.vShieldedSpend) {
if (spendDescription.anchor == invalidRoot) {
transactionsToRemove.push_back(tx);
break;
}
}
break;
default:
throw runtime_error("Unknown shielded type");
break;
}
}
BOOST_FOREACH(const CTransaction& tx, transactionsToRemove) {
list<CTransaction> removed;
remove(tx, removed, true);
}
}
void CTxMemPool::removeConflicts(const CTransaction &tx, std::list<CTransaction>& removed)
{
// Remove transactions which depend on inputs of tx, recursively
list<CTransaction> result;
LOCK(cs);
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
std::map<COutPoint, CInPoint>::iterator it = mapNextTx.find(txin.prevout);
if (it != mapNextTx.end()) {
const CTransaction &txConflict = *it->second.ptx;
if (txConflict != tx)
{
remove(txConflict, removed, true);
}
}
}
// remove conflicting Sapling z2z tx's
for (const SpendDescription &spendDescription : tx.vShieldedSpend) {
std::map<uint256, const CTransaction*>::iterator it = mapSaplingNullifiers.find(spendDescription.nullifier);
if (it != mapSaplingNullifiers.end()) {
const CTransaction &txConflict = *it->second;
if (txConflict != tx) {
remove(txConflict, removed, true);
}
}
}
}
extern char SMART_CHAIN_SYMBOL[];
std::vector<uint256> CTxMemPool::removeExpired(unsigned int nBlockHeight)
{
CBlockIndex *tipindex;
// Remove expired txs from the mempool
LOCK(cs);
list<CTransaction> transactionsToRemove;
std::vector<uint256> ids;
for (const CTransaction& tx : transactionsToRemove) {
list<CTransaction> removed;
remove(tx, removed, true);
ids.push_back(tx.GetHash());
LogPrint("mempool", "Removing expired txid: %s\n", tx.GetHash().ToString());
}
return ids;
}
// Called when a block is connected. Removes from mempool and updates the miner fee estimator.
void CTxMemPool::removeForBlock(const std::vector<CTransaction>& vtx, unsigned int nBlockHeight,
std::list<CTransaction>& conflicts, bool fCurrentEstimate)
{
LOCK(cs);
std::vector<CTxMemPoolEntry> entries;
BOOST_FOREACH(const CTransaction& tx, vtx)
{
uint256 hash = tx.GetHash();
indexed_transaction_set::iterator i = mapTx.find(hash);
if (i != mapTx.end())
entries.push_back(*i);
}
BOOST_FOREACH(const CTransaction& tx, vtx)
{
std::list<CTransaction> dummy;
remove(tx, dummy, false);
removeConflicts(tx, conflicts);
ClearPrioritisation(tx.GetHash());
}
// After the txs in the new block have been removed from the mempool, update policy estimates
minerPolicyEstimator->processBlock(nBlockHeight, entries, fCurrentEstimate);
}
/**
* Called whenever the tip changes. Removes transactions which don't commit to
* the given branch ID from the mempool.
*/
void CTxMemPool::removeWithoutBranchId(uint32_t nMemPoolBranchId)
{
LOCK(cs);
std::list<CTransaction> transactionsToRemove;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
const CTransaction& tx = it->GetTx();
if (it->GetValidatedBranchId() != nMemPoolBranchId) {
transactionsToRemove.push_back(tx);
}
}
for (const CTransaction& tx : transactionsToRemove) {
std::list<CTransaction> removed;
remove(tx, removed, true);
}
}
void CTxMemPool::clear()
{
LOCK(cs);
mapTx.clear();
mapNextTx.clear();
totalTxSize = 0;
cachedInnerUsage = 0;
++nTransactionsUpdated;
}
void CTxMemPool::check(const CCoinsViewCache *pcoins) const
{
if (nCheckFrequency == 0)
return;
if (insecure_rand() >= nCheckFrequency)
return;
LogPrint("mempool", "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
uint64_t checkTotal = 0;
uint64_t innerUsage = 0;
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache*>(pcoins));
const int64_t nSpendHeight = GetSpendHeight(mempoolDuplicate);
LOCK(cs);
list<const CTxMemPoolEntry*> waitingOnDependants;
for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) {
unsigned int i = 0;
checkTotal += it->GetTxSize();
innerUsage += it->DynamicMemoryUsage();
const CTransaction& tx = it->GetTx();
bool fDependsWait = false;
BOOST_FOREACH(const CTxIn &txin, tx.vin) {
// Check that every mempool transaction's inputs refer to available coins, or other mempool tx's.
indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash);
if (it2 != mapTx.end()) {
const CTransaction& tx2 = it2->GetTx();
assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull());
fDependsWait = true;
} else {
const CCoins* coins = pcoins->AccessCoins(txin.prevout.hash);
assert(coins && coins->IsAvailable(txin.prevout.n));
}
// Check whether its inputs are marked in mapNextTx.
std::map<COutPoint, CInPoint>::const_iterator it3 = mapNextTx.find(txin.prevout);
assert(it3 != mapNextTx.end());
assert(it3->second.ptx == &tx);
assert(it3->second.n == i);
i++;
}
for (const SpendDescription &spendDescription : tx.vShieldedSpend) {
SaplingMerkleTree tree;
assert(pcoins->GetSaplingAnchorAt(spendDescription.anchor, tree));
assert(!pcoins->GetNullifier(spendDescription.nullifier, SAPLING));
}
if (fDependsWait)
waitingOnDependants.push_back(&(*it));
else {
CValidationState state;
bool fCheckResult = tx.IsCoinBase() ||
Consensus::CheckTxInputs(tx, state, mempoolDuplicate, nSpendHeight, Params().GetConsensus());
assert(fCheckResult);
UpdateCoins(tx, mempoolDuplicate, 1000000);
}
}
unsigned int stepsSinceLastRemove = 0;
while (!waitingOnDependants.empty()) {
const CTxMemPoolEntry* entry = waitingOnDependants.front();
waitingOnDependants.pop_front();
CValidationState state;
if (!mempoolDuplicate.HaveInputs(entry->GetTx())) {
waitingOnDependants.push_back(entry);
stepsSinceLastRemove++;
assert(stepsSinceLastRemove < waitingOnDependants.size());
} else {
bool fCheckResult = entry->GetTx().IsCoinBase() ||
Consensus::CheckTxInputs(entry->GetTx(), state, mempoolDuplicate, nSpendHeight, Params().GetConsensus());
assert(fCheckResult);
UpdateCoins(entry->GetTx(), mempoolDuplicate, 1000000);
stepsSinceLastRemove = 0;
}
}
for (std::map<COutPoint, CInPoint>::const_iterator it = mapNextTx.begin(); it != mapNextTx.end(); it++) {
uint256 hash = it->second.ptx->GetHash();
indexed_transaction_set::const_iterator it2 = mapTx.find(hash);
const CTransaction& tx = it2->GetTx();
assert(it2 != mapTx.end());
assert(&tx == it->second.ptx);
assert(tx.vin.size() > it->second.n);
assert(it->first == it->second.ptx->vin[it->second.n].prevout);
}
checkNullifiers(SAPLING);
assert(totalTxSize == checkTotal);
assert(innerUsage == cachedInnerUsage);
}
void CTxMemPool::checkNullifiers(ShieldedType type) const
{
const std::map<uint256, const CTransaction*>* mapToUse;
switch (type) {
case SAPLING:
mapToUse = &mapSaplingNullifiers;
break;
default:
throw runtime_error("Unknown nullifier type");
}
for (const auto& entry : *mapToUse) {
uint256 hash = entry.second->GetHash();
CTxMemPool::indexed_transaction_set::const_iterator findTx = mapTx.find(hash);
const CTransaction& tx = findTx->GetTx();
assert(findTx != mapTx.end());
assert(&tx == entry.second);
}
}
void CTxMemPool::queryHashes(vector<uint256>& vtxid)
{
vtxid.clear();
LOCK(cs);
vtxid.reserve(mapTx.size());
for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
vtxid.push_back(mi->GetTx().GetHash());
}
bool CTxMemPool::lookup(uint256 hash, CTransaction& result) const
{
LOCK(cs);
indexed_transaction_set::const_iterator i = mapTx.find(hash);
if (i == mapTx.end()) return false;
result = i->GetTx();
return true;
}
CFeeRate CTxMemPool::estimateFee(int nBlocks) const
{
LOCK(cs);
return minerPolicyEstimator->estimateFee(nBlocks);
}
double CTxMemPool::estimatePriority(int nBlocks) const
{
LOCK(cs);
return minerPolicyEstimator->estimatePriority(nBlocks);
}
bool
CTxMemPool::WriteFeeEstimates(CAutoFile& fileout) const
{
try {
LOCK(cs);
fileout << 109900; // version required to read: 0.10.99 or later
fileout << CLIENT_VERSION; // version that wrote the file
minerPolicyEstimator->Write(fileout);
}
catch (const std::exception&) {
LogPrintf("CTxMemPool::WriteFeeEstimates(): unable to write policy estimator data (non-fatal)\n");
return false;
}
return true;
}
bool
CTxMemPool::ReadFeeEstimates(CAutoFile& filein)
{
try {
int nVersionRequired, nVersionThatWrote;
filein >> nVersionRequired >> nVersionThatWrote;
if (nVersionRequired > CLIENT_VERSION)
return error("CTxMemPool::ReadFeeEstimates(): up-version (%d) fee estimate file", nVersionRequired);
LOCK(cs);
minerPolicyEstimator->Read(filein);
}
catch (const std::exception&) {
LogPrintf("CTxMemPool::ReadFeeEstimates(): unable to read policy estimator data (non-fatal)\n");
return false;
}
return true;
}
void CTxMemPool::PrioritiseTransaction(const uint256 hash, const string strHash, double dPriorityDelta, const CAmount& nFeeDelta)
{
{
LOCK(cs);
std::pair<double, CAmount> &deltas = mapDeltas[hash];
deltas.first += dPriorityDelta;
deltas.second += nFeeDelta;
}
LogPrintf("PrioritiseTransaction: %s priority += %f, fee += %d\n", strHash, dPriorityDelta, FormatMoney(nFeeDelta));
}
void CTxMemPool::ApplyDeltas(const uint256 hash, double &dPriorityDelta, CAmount &nFeeDelta)
{
LOCK(cs);
std::map<uint256, std::pair<double, CAmount> >::iterator pos = mapDeltas.find(hash);
if (pos == mapDeltas.end())
return;
const std::pair<double, CAmount> &deltas = pos->second;
dPriorityDelta += deltas.first;
nFeeDelta += deltas.second;
}
void CTxMemPool::ClearPrioritisation(const uint256 hash)
{
LOCK(cs);
mapDeltas.erase(hash);
}
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const
{
for (unsigned int i = 0; i < tx.vin.size(); i++)
if (exists(tx.vin[i].prevout.hash))
return false;
return true;
}
bool CTxMemPool::nullifierExists(const uint256& nullifier, ShieldedType type) const
{
switch (type) {
case SAPLING:
return mapSaplingNullifiers.count(nullifier);
default:
throw runtime_error("Unknown nullifier type");
}
}
std::pair<std::vector<CTransaction>, uint64_t> CTxMemPool::DrainRecentlyAdded()
{
uint64_t recentlyAddedSequence;
std::vector<CTransaction> txs;
{
LOCK(cs);
recentlyAddedSequence = nRecentlyAddedSequence;
for (const auto& kv : mapRecentlyAddedTx) {
txs.push_back(*(kv.second));
}
mapRecentlyAddedTx.clear();
}
return std::make_pair(txs, recentlyAddedSequence);
}
void CTxMemPool::SetNotifiedSequence(uint64_t recentlyAddedSequence) {
assert(Params().NetworkIDString() == "regtest");
LOCK(cs);
nNotifiedSequence = recentlyAddedSequence;
}
bool CTxMemPool::IsFullyNotified() {
assert(Params().NetworkIDString() == "regtest");
LOCK(cs);
return nRecentlyAddedSequence == nNotifiedSequence;
}
std::map<uint256, const CTransaction*> CTxMemPool::getNullifiers() {
return mapSaplingNullifiers;
}
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView *baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { }
bool CCoinsViewMemPool::GetNullifier(const uint256 &nf, ShieldedType type) const
{
return mempool.nullifierExists(nf, type) || base->GetNullifier(nf, type);
}
bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) const {
// If an entry in the mempool exists, always return that one, as it's guaranteed to never
// conflict with the underlying cache, and it cannot have pruned entries (as it contains full)
// transactions. First checking the underlying cache risks returning a pruned entry instead.
CTransaction tx;
if (mempool.lookup(txid, tx)) {
coins = CCoins(tx, MEMPOOL_HEIGHT);
return true;
}
return (base->GetCoins(txid, coins) && !coins.IsPruned());
}
bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) const {
return mempool.exists(txid) || base->HaveCoins(txid);
}
size_t CTxMemPool::DynamicMemoryUsage() const {
LOCK(cs);
// Estimate the overhead of mapTx to be 6 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented.
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 6 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + cachedInnerUsage;
}