Hush Full Node software. We were censored from Github, this is where all development happens now. https://hush.is
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

688 lines
24 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the GPLv3 software license, see the accompanying
// file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html
/******************************************************************************
* Copyright © 2014-2019 The SuperNET Developers. *
* *
* See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
* the top-level directory of this distribution for the individual copyright *
* holder information and the developer policies on copyright and licensing. *
* *
* Unless otherwise agreed in a custom licensing agreement, no part of the *
* SuperNET software, including this file may be copied, modified, propagated *
* or distributed except according to the terms contained in the LICENSE file *
* *
* Removal or modification of this copyright notice is prohibited. *
* *
******************************************************************************/
#include "script/sign.h"
#include "primitives/transaction.h"
#include "key.h"
#include "keystore.h"
#include "script/standard.h"
#include "uint256.h"
#include "cc/CCinclude.h"
#include "cc/eval.h"
#include "key_io.h"
#include <boost/foreach.hpp>
using namespace std;
typedef vector<unsigned char> valtype;
extern uint8_t ASSETCHAINS_TXPOW;
extern char NSPV_wifstr[],NSPV_pubkeystr[];
extern int32_t KOMODO_NSPV;
#ifndef KOMODO_NSPV_FULLNODE
#define KOMODO_NSPV_FULLNODE (KOMODO_NSPV <= 0)
#endif // !KOMODO_NSPV_FULLNODE
#ifndef KOMODO_NSPV_SUPERLITE
#define KOMODO_NSPV_SUPERLITE (KOMODO_NSPV > 0)
#endif // !KOMODO_NSPV_SUPERLITE
uint256 SIG_TXHASH;
TransactionSignatureCreator::TransactionSignatureCreator(const CKeyStore* keystoreIn, const CTransaction* txToIn, unsigned int nInIn, const CAmount& amountIn, int nHashTypeIn) : BaseSignatureCreator(keystoreIn), txTo(txToIn), nIn(nInIn), nHashType(nHashTypeIn), amount(amountIn), checker(txTo, nIn, amountIn) {}
bool TransactionSignatureCreator::CreateSig(std::vector<unsigned char>& vchSig, const CKeyID& address, const CScript& scriptCode, uint32_t consensusBranchId, CKey *pprivKey, void *extraData) const
{
CKey key; uint256 hash;
try {
hash = SignatureHash(scriptCode, *txTo, nIn, nHashType, amount, consensusBranchId);
} catch (logic_error ex) {
{
fprintf(stderr,"logic error\n");
return false;
}
}
SIG_TXHASH = hash;
if ( KOMODO_NSPV_SUPERLITE )
key = DecodeSecret(NSPV_wifstr);
else if (pprivKey)
key = *pprivKey;
else if (!keystore || !keystore->GetKey(address, key))
{
fprintf(stderr,"keystore.%p error\n",keystore);
return false;
}
//fprintf(stderr,"privkey (%s) for %s\n",NSPV_wifstr,EncodeDestination(key.GetPubKey().GetID()).c_str());
if (scriptCode.IsPayToCryptoCondition())
{
CC *cc = (CC *)extraData;
// assume either 1of1 or 1of2. if the condition created by the
if (!cc || cc_signTreeSecp256k1Msg32(cc, key.begin(), hash.begin()) == 0)
{
fprintf(stderr,"CC tree error\n");
return false;
}
vchSig = CCSigVec(cc);
if ( KOMODO_NSPV_SUPERLITE )
memset((uint8_t *)key.begin(),0,32);
return true;
}
else
{
if ( ASSETCHAINS_TXPOW == 0 )
{
if (!key.Sign(hash, vchSig))
{
fprintf(stderr,"key.Sign error\n");
return false;
}
else
{
//fprintf(stderr,"signed success %s\n",(char *)HexStr(vchSig).c_str());
}
}
else
{
if (!key.Sign(hash, vchSig, rand()))
return false;
}
}
vchSig.push_back((unsigned char)nHashType);
if ( KOMODO_NSPV_SUPERLITE )
memset((uint8_t *)key.begin(),0,32);
return true;
}
static bool Sign1(const CKeyID& address, const BaseSignatureCreator& creator, const CScript& scriptCode, std::vector<valtype>& ret, uint32_t consensusBranchId)
{
vector<unsigned char> vchSig;
if (!creator.CreateSig(vchSig, address, scriptCode, consensusBranchId))
{
fprintf(stderr,"Sign1 creatsig error\n");
return false;
}
ret.push_back(vchSig);
return true;
}
static bool SignN(const vector<valtype>& multisigdata, const BaseSignatureCreator& creator, const CScript& scriptCode, std::vector<valtype>& ret, uint32_t consensusBranchId)
{
int nSigned = 0;
int nRequired = multisigdata.front()[0];
for (unsigned int i = 1; i < multisigdata.size()-1 && nSigned < nRequired; i++)
{
const valtype& pubkey = multisigdata[i];
CKeyID keyID = CPubKey(pubkey).GetID();
if (Sign1(keyID, creator, scriptCode, ret, consensusBranchId))
++nSigned;
}
return nSigned==nRequired;
}
CC *CCcond1of2(uint8_t evalcode,CPubKey pk1,CPubKey pk2)
{
std::vector<CC*> pks;
pks.push_back(CCNewSecp256k1(pk1));
pks.push_back(CCNewSecp256k1(pk2));
CC *condCC = CCNewEval(E_MARSHAL(ss << evalcode));
CC *Sig = CCNewThreshold(1, pks);
return CCNewThreshold(2, {condCC, Sig});
}
CC *CCcond1(uint8_t evalcode,CPubKey pk)
{
std::vector<CC*> pks;
pks.push_back(CCNewSecp256k1(pk));
CC *condCC = CCNewEval(E_MARSHAL(ss << evalcode));
CC *Sig = CCNewThreshold(1, pks);
return CCNewThreshold(2, {condCC, Sig});
}
std::vector<CCcontract_info> &GetCryptoConditions()
{
static bool initialized = false;
static std::vector<CCcontract_info> vCC = std::vector<CCcontract_info>();
CCcontract_info C;
if (!initialized)
{
// this should initialize any desired auto-signed crypto-conditions
}
return vCC;
}
bool GetCCByUnspendableAddress(struct CCcontract_info *cp, char *addrstr)
{
std::vector<CCcontract_info> &vCC = GetCryptoConditions();
bool found = false;
for (int i = 0; i < vCC.size(); i++)
{
if (strcmp(addrstr, vCC[i].unspendableCCaddr) == 0)
{
found = true;
*cp = vCC[i];
break;
}
}
return found;
}
bool CCinitLite(struct CCcontract_info *cp, uint8_t evalcode)
{
std::vector<CCcontract_info> &vCC = GetCryptoConditions();
bool found = false;
for (int i = 0; i < vCC.size(); i++)
{
if (vCC[i].evalcode == evalcode)
{
found = true;
*cp = vCC[i];
break;
}
}
return found;
}
bool _Getscriptaddress(char *destaddr, const CScript &scriptPubKey)
{
CTxDestination address;
txnouttype whichType;
std::vector<std::vector<unsigned char>> vvch = std::vector<std::vector<unsigned char>>();
if (Solver(scriptPubKey, whichType, vvch) && vvch[0].size() == 20)
{
address = CKeyID(uint160(vvch[0]));
strcpy(destaddr,(char *)CBitcoinAddress(address).ToString().c_str());
return(true);
}
fprintf(stderr,"Solver for scriptPubKey failed\n%s\n", scriptPubKey.ToString().c_str());
return(false);
}
CScript _CCPubKey(const CC *cond)
{
unsigned char buf[1000];
size_t len = cc_conditionBinary(cond, buf);
return CScript() << std::vector<unsigned char>(buf, buf+len) << OP_CHECKCRYPTOCONDITION;
}
static bool SignStepCC(const BaseSignatureCreator& creator, const CScript& scriptPubKey, vector<valtype> &vSolutions,
vector<valtype>& ret, uint32_t consensusBranchId)
{
CScript subScript;
vector<CPubKey> vPK;
vector<valtype> vParams = vector<valtype>();
COptCCParams p;
// get information to sign with
CCcontract_info C;
scriptPubKey.IsPayToCryptoCondition(&subScript, vParams);
if (vParams.empty())
{
// get the keyID address of the cc and if it is an unspendable cc address, use its pubkey
// we have nothing else
char addr[64];
if (_Getscriptaddress(addr, subScript) && GetCCByUnspendableAddress(&C, addr))
{
vPK.push_back(CPubKey(ParseHex(C.CChexstr)));
p = COptCCParams(p.VERSION, C.evalcode, 1, 1, vPK, vParams);
}
}
else
{
p = COptCCParams(vParams[0]);
}
if (p.IsValid() && p.vKeys.size() >= p.n)
{
bool is1of2 = (p.m == 1 && p.n == 2);
CKey privKey;
// must be a valid cc eval code
if (CCinitLite(&C, p.evalCode))
{
// pay to cc address is a valid tx
if (!is1of2)
{
bool havePriv = creator.KeyStore().GetKey(p.vKeys[0].GetID(), privKey);
// if we don't have the private key, it must be the unspendable address
if (!havePriv && (p.vKeys[0] == CPubKey(ParseHex(C.CChexstr))))
{
privKey = CKey();
std::vector<unsigned char> vch(&(C.CCpriv[0]), C.CCpriv + sizeof(C.CCpriv));
privKey.Set(vch.begin(), vch.end(), false);
}
CC *cc = CCcond1(p.evalCode, p.vKeys[0]);
if (cc)
{
vector<unsigned char> vch;
if (creator.CreateSig(vch, p.vKeys[0].GetID(), _CCPubKey(cc), consensusBranchId, &privKey, (void *)cc))
{
ret.push_back(vch);
}
else
{
fprintf(stderr,"vin has 1of1 CC signing error with address.(%s)\n", p.vKeys[0].GetID().ToString().c_str());
}
cc_free(cc);
return ret.size() != 0;
}
}
else
{
// first of priv key in our key store or contract address is what we sign with
for (auto pk : p.vKeys)
{
if (creator.IsKeystoreValid() && creator.KeyStore().GetKey(pk.GetID(), privKey) && privKey.IsValid())
break;
if (pk == CPubKey(ParseHex(C.CChexstr)))
{
privKey = CKey();
std::vector<unsigned char> vch(&(C.CCpriv[0]), C.CCpriv + sizeof(C.CCpriv));
privKey.Set(vch.begin(), vch.end(), false);
break;
}
}
if (!privKey.IsValid())
return false;
CC *cc = CCcond1of2(p.evalCode, p.vKeys[0], p.vKeys[1]);
if (cc)
{
vector<unsigned char> vch;
if (creator.CreateSig(vch, p.vKeys[0].GetID(), _CCPubKey(cc), consensusBranchId, &privKey, (void *)cc))
{
ret.push_back(vch);
}
else
{
fprintf(stderr,"vin has 1of2 CC signing error with addresses.(%s)\n(%s)\n", p.vKeys[0].GetID().ToString().c_str(), p.vKeys[1].GetID().ToString().c_str());
}
cc_free(cc);
return ret.size() != 0;
}
}
}
}
return false;
}
/**
* Sign scriptPubKey using signature made with creator.
* Signatures are returned in scriptSigRet (or returns false if scriptPubKey can't be signed),
* unless whichTypeRet is TX_SCRIPTHASH, in which case scriptSigRet is the redemption script.
* Returns false if scriptPubKey could not be completely satisfied.
*/
static bool SignStep(const BaseSignatureCreator& creator, const CScript& scriptPubKey,
std::vector<valtype>& ret, txnouttype& whichTypeRet, uint32_t consensusBranchId)
{
CScript scriptRet;
uint160 h160;
ret.clear();
vector<valtype> vSolutions;
if (!Solver(scriptPubKey, whichTypeRet, vSolutions))
{
// if this is a CLTV script, solve for the destination after CLTV
if (scriptPubKey.IsCheckLockTimeVerify())
{
uint8_t pushOp = scriptPubKey[0];
uint32_t scriptStart = pushOp + 3;
// check post CLTV script
CScript postfix = CScript(scriptPubKey.size() > scriptStart ? scriptPubKey.begin() + scriptStart : scriptPubKey.end(), scriptPubKey.end());
// check again with only postfix subscript
if (!Solver(postfix, whichTypeRet, vSolutions))
return false;
}
else
return false;
}
CKeyID keyID;
switch (whichTypeRet)
{
case TX_NONSTANDARD:
case TX_NULL_DATA:
return false;
case TX_PUBKEY:
keyID = CPubKey(vSolutions[0]).GetID();
return Sign1(keyID, creator, scriptPubKey, ret, consensusBranchId);
case TX_PUBKEYHASH:
keyID = CKeyID(uint160(vSolutions[0]));
if (!Sign1(keyID, creator, scriptPubKey, ret, consensusBranchId))
{
fprintf(stderr,"sign1 error\n");
return false;
}
else
{
if ( KOMODO_NSPV_FULLNODE )
{
CPubKey vch;
creator.KeyStore().GetPubKey(keyID, vch);
ret.push_back(ToByteVector(vch));
} else ret.push_back(ParseHex(NSPV_pubkeystr));
}
return true;
case TX_SCRIPTHASH:
if (creator.KeyStore().GetCScript(uint160(vSolutions[0]), scriptRet)) {
ret.push_back(std::vector<unsigned char>(scriptRet.begin(), scriptRet.end()));
return true;
}
return false;
case TX_CRYPTOCONDITION:
return SignStepCC(creator, scriptPubKey, vSolutions, ret, consensusBranchId);
case TX_MULTISIG:
ret.push_back(valtype()); // workaround CHECKMULTISIG bug
return (SignN(vSolutions, creator, scriptPubKey, ret, consensusBranchId));
default:
return false;
}
}
static CScript PushAll(const vector<valtype>& values)
{
CScript result;
BOOST_FOREACH(const valtype& v, values) {
if (v.size() == 0) {
result << OP_0;
} else if (v.size() == 1 && v[0] >= 1 && v[0] <= 16) {
result << CScript::EncodeOP_N(v[0]);
} else {
result << v;
}
}
return result;
}
bool ProduceSignature(const BaseSignatureCreator& creator, const CScript& fromPubKey, SignatureData& sigdata, uint32_t consensusBranchId)
{
CScript script = fromPubKey;
bool solved = true;
std::vector<valtype> result;
txnouttype whichType;
solved = SignStep(creator, script, result, whichType, consensusBranchId);
CScript subscript;
if (solved && whichType == TX_SCRIPTHASH)
{
// Solver returns the subscript that needs to be evaluated;
// the final scriptSig is the signatures from that
// and then the serialized subscript:
script = subscript = CScript(result[0].begin(), result[0].end());
solved = solved && SignStep(creator, script, result, whichType, consensusBranchId) && whichType != TX_SCRIPTHASH;
result.push_back(std::vector<unsigned char>(subscript.begin(), subscript.end()));
}
sigdata.scriptSig = PushAll(result);
// Test solution
return solved && VerifyScript(sigdata.scriptSig, fromPubKey, STANDARD_SCRIPT_VERIFY_FLAGS, creator.Checker(), consensusBranchId);
}
SignatureData DataFromTransaction(const CMutableTransaction& tx, unsigned int nIn)
{
SignatureData data;
assert(tx.vin.size() > nIn);
data.scriptSig = tx.vin[nIn].scriptSig;
return data;
}
void UpdateTransaction(CMutableTransaction& tx, unsigned int nIn, const SignatureData& data)
{
assert(tx.vin.size() > nIn);
tx.vin[nIn].scriptSig = data.scriptSig;
}
bool SignSignature(
const CKeyStore &keystore,
const CScript& fromPubKey,
CMutableTransaction& txTo,
unsigned int nIn,
const CAmount& amount,
int nHashType,
uint32_t consensusBranchId)
{
assert(nIn < txTo.vin.size());
CTransaction txToConst(txTo);
TransactionSignatureCreator creator(&keystore, &txToConst, nIn, amount, nHashType);
SignatureData sigdata;
bool ret = ProduceSignature(creator, fromPubKey, sigdata, consensusBranchId);
UpdateTransaction(txTo, nIn, sigdata);
return ret;
}
bool SignSignature(
const CKeyStore &keystore,
const CTransaction& txFrom,
CMutableTransaction& txTo,
unsigned int nIn,
int nHashType,
uint32_t consensusBranchId)
{
assert(nIn < txTo.vin.size());
CTxIn& txin = txTo.vin[nIn];
assert(txin.prevout.n < txFrom.vout.size());
const CTxOut& txout = txFrom.vout[txin.prevout.n];
return SignSignature(keystore, txout.scriptPubKey, txTo, nIn, txout.nValue, nHashType, consensusBranchId);
}
static vector<valtype> CombineMultisig(const CScript& scriptPubKey, const BaseSignatureChecker& checker,
const vector<valtype>& vSolutions,
const vector<valtype>& sigs1, const vector<valtype>& sigs2, uint32_t consensusBranchId)
{
// Combine all the signatures we've got:
set<valtype> allsigs;
BOOST_FOREACH(const valtype& v, sigs1)
{
if (!v.empty())
allsigs.insert(v);
}
BOOST_FOREACH(const valtype& v, sigs2)
{
if (!v.empty())
allsigs.insert(v);
}
// Build a map of pubkey -> signature by matching sigs to pubkeys:
assert(vSolutions.size() > 1);
unsigned int nSigsRequired = vSolutions.front()[0];
unsigned int nPubKeys = vSolutions.size()-2;
map<valtype, valtype> sigs;
BOOST_FOREACH(const valtype& sig, allsigs)
{
for (unsigned int i = 0; i < nPubKeys; i++)
{
const valtype& pubkey = vSolutions[i+1];
if (sigs.count(pubkey))
continue; // Already got a sig for this pubkey
if (checker.CheckSig(sig, pubkey, scriptPubKey, consensusBranchId))
{
sigs[pubkey] = sig;
break;
}
}
}
// Now build a merged CScript:
unsigned int nSigsHave = 0;
std::vector<valtype> result; result.push_back(valtype()); // pop-one-too-many workaround
for (unsigned int i = 0; i < nPubKeys && nSigsHave < nSigsRequired; i++)
{
if (sigs.count(vSolutions[i+1]))
{
result.push_back(sigs[vSolutions[i+1]]);
++nSigsHave;
}
}
// Fill any missing with OP_0:
for (unsigned int i = nSigsHave; i < nSigsRequired; i++)
result.push_back(valtype());
return result;
}
namespace
{
struct Stacks
{
std::vector<valtype> script;
Stacks() {}
explicit Stacks(const std::vector<valtype>& scriptSigStack_) : script(scriptSigStack_) {}
explicit Stacks(const SignatureData& data, uint32_t consensusBranchId) {
EvalScript(script, data.scriptSig, SCRIPT_VERIFY_STRICTENC, BaseSignatureChecker(), consensusBranchId);
}
SignatureData Output() const {
SignatureData result;
result.scriptSig = PushAll(script);
return result;
}
};
}
static Stacks CombineSignatures(const CScript& scriptPubKey, const BaseSignatureChecker& checker,
const txnouttype txType, const vector<valtype>& vSolutions,
Stacks sigs1, Stacks sigs2, uint32_t consensusBranchId)
{
switch (txType)
{
case TX_NONSTANDARD:
case TX_NULL_DATA:
// Don't know anything about this, assume bigger one is correct:
if (sigs1.script.size() >= sigs2.script.size())
return sigs1;
return sigs2;
case TX_PUBKEY:
case TX_PUBKEYHASH:
case TX_CRYPTOCONDITION:
// Signatures are bigger than placeholders or empty scripts:
if (sigs1.script.empty() || sigs1.script[0].empty())
return sigs2;
return sigs1;
case TX_SCRIPTHASH:
if (sigs1.script.empty() || sigs1.script.back().empty())
return sigs2;
else if (sigs2.script.empty() || sigs2.script.back().empty())
return sigs1;
else
{
// Recur to combine:
valtype spk = sigs1.script.back();
CScript pubKey2(spk.begin(), spk.end());
txnouttype txType2;
vector<vector<unsigned char> > vSolutions2;
Solver(pubKey2, txType2, vSolutions2);
sigs1.script.pop_back();
sigs2.script.pop_back();
Stacks result = CombineSignatures(pubKey2, checker, txType2, vSolutions2, sigs1, sigs2, consensusBranchId);
result.script.push_back(spk);
return result;
}
case TX_MULTISIG:
return Stacks(CombineMultisig(scriptPubKey, checker, vSolutions, sigs1.script, sigs2.script, consensusBranchId));
default:
return Stacks();
}
}
SignatureData CombineSignatures(const CScript& scriptPubKey, const BaseSignatureChecker& checker,
const SignatureData& scriptSig1, const SignatureData& scriptSig2,
uint32_t consensusBranchId)
{
txnouttype txType;
vector<vector<unsigned char> > vSolutions;
Solver(scriptPubKey, txType, vSolutions);
return CombineSignatures(
scriptPubKey, checker, txType, vSolutions,
Stacks(scriptSig1, consensusBranchId),
Stacks(scriptSig2, consensusBranchId),
consensusBranchId).Output();
}
namespace {
/** Dummy signature checker which accepts all signatures. */
class DummySignatureChecker : public BaseSignatureChecker
{
public:
DummySignatureChecker() {}
bool CheckSig(
const std::vector<unsigned char>& scriptSig,
const std::vector<unsigned char>& vchPubKey,
const CScript& scriptCode,
uint32_t consensusBranchId) const
{
return true;
}
};
const DummySignatureChecker dummyChecker;
}
const BaseSignatureChecker& DummySignatureCreator::Checker() const
{
return dummyChecker;
}
bool DummySignatureCreator::CreateSig(
std::vector<unsigned char>& vchSig,
const CKeyID& keyid,
const CScript& scriptCode,
uint32_t consensusBranchId,
CKey *key,
void *extraData) const
{
// Create a dummy signature that is a valid DER-encoding
vchSig.assign(72, '\000');
vchSig[0] = 0x30;
vchSig[1] = 69;
vchSig[2] = 0x02;
vchSig[3] = 33;
vchSig[4] = 0x01;
vchSig[4 + 33] = 0x02;
vchSig[5 + 33] = 32;
vchSig[6 + 33] = 0x01;
vchSig[6 + 33 + 32] = SIGHASH_ALL;
return true;
}