
Hushlist Protocol Speci�cation
Version

David Mercer†

Duke Leto†

December 22, 2017

Abstract.
HushList is a protocol for anonymous mailing lists using the encrypted memo �eld of the Zcash

protocol. It supports anonymous and pseudonymous senders, receivers and Hushlist creators, as well
as public and private lists. The HushList protocol can run on any fork of Zcash that has a compatible 512
byte memo �eld, though certain advanced features might not be fully supported on all chains. HushList
is developed and tested on the Hush and Zcash mainnets as well as testnets (TUSH and TAZ), next to
be tested is Komodo (KMD).

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with se-
curity �xes and adjustments to terminology, functionality and performance. It bridges the existing
transparent payment scheme used by Bitcoin with a shielded payment scheme secured by zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs).

Hush is a fork of the Zcash codebase (1.0.9) which generated it’s own genesis block and uses the
Zcash Sprout proving key.

This speci�cation de�nes the HushList communication protocol and explains how it builds on the
foundation of Zcash and Bitcoin.

Keywords: anonymity, freedom of speech, cryptographic protocols, electronic commerce and pay-
ment, �nancial privacy, proof of work, zero knowledge.

Contents 1

1 Introduction 3

1.1 High-level Overview . 3

2 Notation 3

3 Account Funding 4

4 List Creation 5

5 List Subscription 5

† Hush Core, Zcash Core, Bitcoin Core

1

6 Sending To A List 5

7 Receiving Messages 5

8 Costs 5

9 References 5

2

Introduction

HushList is a protocol for anonymous mailing lists using the encrypted memo �eld of the zcash protocol.

Technical terms for concepts that play an important role in HushList are written in slanted text . Italics are used
for emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described
in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain
English words, absent their normative meanings.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Implications

High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin or Zcash.

XXX

Value in Hush is either transparent or shielded . Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes , which specify an amount and a paying key.
The paying key is part of a payment address , which is a destination to which notes can be sent. As in Bitcoin, this is
associated with a private key that can be used to spend notes sent to the address; in Hush this is called a spending
key.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also contains a sequence of zero or more JoinSplit descriptions . Each of these describes a JoinSplit transfer
which takes in a transparent value and up to two input notes , and produces a transparent value and up to two
output notes .

Notation

B means the type of bit values, i.e. {0, 1}.

N means the type of nonnegative integers. N+ means the type of positive integers. Q means the type of rationals.

x ◦
◦ T is used to specify that x has type T . A cartesian product type is denoted by S × T , and a function type by

S → T . An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by S
R→ T . The domain of a randomized algorithm may be (),

indicating that it requires no arguments. Given f ◦
◦ S

R→ T and s ◦
◦ S, sampling a variable x ◦

◦ T from the output of f

applied to s is denoted by x
R← f (s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if x ◦
◦ X , y ◦

◦ Y , and
f ◦

◦ X × Y → Z , then an invocation of f (x, y) can also be written fx(y).

3

T [`], where T is a type and ` is an integer, means the type of sequences of length ` with elements in T . For example,
B[`] means the set of sequences of ` bits.

length(S) means the length of (number of elements in) S.

T ⊆ U indicates that T is an inclusive subset or subtype of U .

B[8·N] means the set of bit sequences constrained to be of length a multiple of 8 bits.

0x followed by a string of boldface hexadecimal digits means the corresponding integer converted from hexadec-
imal.

“...” means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63].

[0]` means the sequence of ` zero bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example, anew
pk,1..Nnew

means the sequence [anew
pk,1, anew

pk,2, ... anew
pk,Nnew]. (For consistency with the notation in [BCG+2014] and in [BK2016], this

speci�cation uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the con-
trary made in [EWD-831].)

{a .. b}means the set or type of integers from a through b inclusive.

[f (x) for x from a up to b] means the sequence formed by evaluating f on each integer from a to b inclusive, in
ascending order. Similarly, [f (x) for x from a down to b] means the sequence formed by evaluating f on each
integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concatB(S) means the sequence of bits obtained by concatenating the elements of S viewed as bit sequences. If
the elements of S are byte sequences, they are converted to bit sequences with the most significant bit of each
byte �rst.

sorted(S) means the sequence formed by sorting the elements of S.

Fn means the �nite �eld with n elements, and F∗
n means its group under multiplication. Fn[z] means the ring of

polynomials over z with coef�cients in Fn.

a · b means the result of multiplying a and b. This may refer to multiplication of integers, rationals, or �nite �eld
elements according to context.

ab, for a an integer or �nite �eld element and b an integer, means the result of raising a to the exponent b.

a mod q, for a ◦
◦ N and q ◦

◦ N+, means the remainder on dividing a by q.

a ⊕ b means the bitwise-exclusive-or of a and b, and a î b means the bitwise-and of a and b. These are de�ned
either on integers or bit sequences according to context.

N∑
i=1

ai means the sum of a1..N .
N⊕

i=1
ai means the bitwise exclusive-or of a1..N .

The binary relations <,≤, =,≥, and > have their conventional meanings on integers and rationals, and are de�ned
lexicographically on sequences of integers.

floor(x) means the largest integer≤ x. ceiling (x) means the smallest integer≥ x.

bitlength(x), for x ◦
◦ N, means the smallest integer ` such that 2` > x.

The symbol ⊥ is used to indicate unavailable information or a failed decryption.

Account Funding

On �rst run, HushList creates a new shielded zaddress zF to fund transparent addresses for pseudonymous send-
ing.

4

It may be funded by the user from any taddr or zaddr with no loss of privacy.

For each pseudonym the user sends from (may be globally used or per-list), a taddr tl is created and a de-shielding
transaction is done from zF → tl.

List Creation

...

List Subscription

When the private key for a list is imported into HushList, either from the blockchain, URI or manual entry, the
private key is added to the user’s wallet, along with a user entered or approved name and description for the list
(if provided in on-chain or uri encoded metadata). HushList creates a unique taddr + zaddr for each list so that the
user may choose to send each message to the list psuedonymously or anonymously or a mixture of both.

Sending To A List

One may send to a HushList from a taddr (pen name, psuedonym) or zaddr (anonymous shielded address) which
is implemented in the client via the z sendmany RPC command. Up to 54 recepients may be in a single shielded
transaction. v1 of HushList only supports HushLists of this size, but v2 may implement larger HushLists.

Receiving Messages

At any time later, after the transaction has entered the blockchain, memos sent to a given address can be down-
loaded and viewed by those parties who have valid private keys or viewing keys.

The client will poll the local full node periodically at a user speci�able default interval the same as the average
block time for the chain in question. For the Hush chain, this is 2.5 minutes.

Costs

Sending HushList memos requires making a �nancial transaction and by default, HushList sends the recipient a
transaction for 0.0 HUSH (or ZEC etc) with the default network fee (currently 0.0001 for ZEC +HUSH). The fee
amount MUST be con�gurable by the user. In the reference implementation of HushList it be changed via the
HUSHLIST FEE environment variable.

References

[BCG+2014] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer,
and Madars Virza. Zerocash: Decentralized Anonymous Payments from Bitcoin (extended ver-
sion). URL: http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
(visited on 2016-08-06). A condensed version appeared in Proceedings of the IEEE Sympo-
sium on Security and Privacy (Oakland) 2014, pages 459–474; IEEE, 2014. (↑ p4).

[Bitcoin-Protocol] Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol_
documentation (visited on 2016-10-02) (↑ p3).

5

http://zerocash-project.org/media/pdf/zerocash-extended-20140518.pdf
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation

[BK2016] Alex Biryukov and Dmitry Khovratovich. Equihash: Asymmetric Proof-of-Work Based on the
Generalized Birthday Problem (full version). Cryptology ePrint Archive: Report 2015/946. Last
revised October 27, 2016. URL: https://eprint.iacr.org/2015/946 (visited on 2016-10-30)
(↑ p4).

[EWD-831] Edsger W. Dijkstra. Why numbering should start at zero. Manuscript. August 11, 1982. URL:
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html (visited on
2016-08-09) (↑ p4).

[RFC-2119] Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://tools.ietf.org/
html/rfc2119 (visited on 2016-09-14) (↑ p3).

6

https://eprint.iacr.org/2015/946
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

	Contents
	1 Introduction
	1.1 High-level Overview

	2 Notation
	3 Account Funding
	4 List Creation
	5 List Subscription
	6 Sending To A List
	7 Receiving Messages
	8 Costs
	9 References

