
HushList Protocol Speci�cation
Pre-Release Version

David Mercer†

Duke Leto‡

January 15, 2018

Abstract.
HushList is a protocol for mailing lists using the encrypted memo �eld of the Zcash protocol. It

supports anonymous and pseudonymous senders, anonymous receivers and Hushlist creators, as well
as public and private lists. The HushList protocol can run on any fork of Zcash that has a compatible
memo �eld, though certain advanced features might not be fully supported on all chains. HushList is
developed and tested on the Hush mainnet and testnets and is designed to run on any ZEC code fork
including but not limited to HUSH, KMD, ZCL, ZEN and the upcoming BTCP and ZAU forks. HushList
is also compatible with Bitcoin Hush BTCH, which is a KMD asset chain.

In addition to the above properties, HushList provides users with censorship-resistant storage and
retrieval, since every Hush full node will have an encrypted copy of every HushList memo. Further-
more, sending and receiving via one or more blockchains is a serious deviation from traditional server-
client design which easily allows a Man-In-The-Middle Attack and Deep Packet Inspection (DPI). Net-
work traf�c monitoring and correlation is made much harder, because there is no longer a packet with
a timestamp and ”selectors” going from one unique IP to another unique IP via a very predictable net-
work route.

Zcash [Zcash] is an implementation of the Decentralized Anonymous Payment scheme Zerocash,
with security �xes and adjustments to terminology, functionality and performance. It bridges the exist-
ing transparent payment scheme used by Bitcoin [Bitcoin] with a shielded payment scheme secured
by zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs).

Hush is a fork of the Zcash codebase (1.0.9) which generated it’s own genesis block and uses the
Zcash Sprout proving key.

This speci�cation de�nes the HushList communication protocol and explains how it builds on the
foundation of Zcash and Bitcoin.

Keywords: anonymity, freedom of speech, cryptographic protocols, electronic commerce and pay-
ment, �nancial privacy, proof of work, zero knowledge.

Contents 1

1 Introduction 3

1.1 High-level Overview . 3

1.2 Types Of Transactions . 3

† radix42@gmail.com
‡ duke@leto.net

1

2 Design of HushList 4

3 Reference Implementation 4

4 Account Funding 5

5 HushList Contacts 5

6 HushList Creation 5

6.1 Private HushLists . 5

6.2 Multi-Chain Private HushLists . 5

6.3 Public HushLists . 6

7 List Subscription 6

8 Sending To A List 7

9 Receiving Messages 7

10 Costs 8

11 Examples 8

12 Metadata Analysis 8

13 User Stories 9

13.1 ”Pen Name” user story - Amanda . 9

13.2 Last Will And Testament User Story - Xerxes . 9

13.3 ”Oppressed Minority” user story - Francesca and Nicolau . 9

13.4 ”Security Researcher” user story - Gordon . 9

13.5 ”Whisteblower” user story - Martha . 10

13.6 ”Censored Journalist” user story - Billy . 10

14 Special Thanks 10

15 References 10

2

Introduction

HushList is a protocol for anonymous mailing lists using the encrypted memo �eld of the zcash protocol.

Technical terms for concepts that play an important role in HushList are written in slanted text . Italics are used
for emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described
in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain
English words, absent their normative meanings.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Implications

High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin or Zcash.

Value in Hush is either transparent or shielded . Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes , which specify an amount and a paying key.
The paying key is part of a payment address , which is a destination to which notes can be sent. As in Bitcoin, this is
associated with a private key that can be used to spend notes sent to the address; in Hush this is called a spending
key.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also contains a sequence of zero or more JoinSplit descriptions . Each of these describes a JoinSplit transfer
which takes in a transparent value and up to two input notes , and produces a transparent value and up to two
output notes .

Types Of Transactions

All Zcash forks have what we will classify into FOUR categories of transactions.

Let t → t be called a transparent transaction, which is identical to a Bitcoin transaction, consisting entirely of
transparent inputs and outputs. HushList protocol implementations MUST NOT create transparent transactions,
they do not protect metadata in any way and lack memo �elds. These transactions can be done with traditional
wallet software and does not have any part in HushList protocol.

Let t → z be called shielding transactions, which takes transparent value stored in UTXOs and transforms them to
Shielded value stored inside of notes which are protected by zk-SNARKs .

Let z → z be called Shielded transactions, which take Shielded value from one Shielded address to another, and
is fully protected by zk-SNARKs . HushList implementations MUST support these transactions, and additionally
SHOULD educate users that they are the most private type of transaction, which minimized metadata leakage.

Let z → t be called deshielding transactions, which take Shielded value stored in notes in z and transfer them to
UTXOs stored in t. HushListMUST NOT create deshielding transactions, as they leak metadata and can potentially
link a previously Shielded address z to a transparent address t. HushList implementation SHOULD attempt to
prevent, at all costs, accidentally sending to a t address via the z sendmanyRPC command.

3

An easy way to summarize the support transactions of HushList is to say: All receivers must by shielded addresses,
senders can be either transparent or shielded addresses.

Each HushListMUST have a default blockchain and network that it is attached to, and the default chain SHOULD
be HUSH. The default network MUST be assumed to be ”mainnet” if not speci�ed, similar to how the *master*
branch is assumed in many Git commands if not speci�ed. The user MUST be able to set their GLOBAL default
chain (not implemented yet) as well as a default chain for each list.

Each list also has a tadd+zaddr dedicated to that list, so the user has dedicated addresses to send psuedo/anon
messages, as well as default fee and amount. The default amount is 0.0 and the default fee is currently 0.0001 but
these numbers are subject to change.

HushList supports �le attachments and embedding arbitrary binary data, it is not limited to ASCII. HushList does
not impose �le size limits and network fees and CPU/RAM costs provide natural incentives for spammers to �nd
cheaper and easier-to-access dumping grounds.

Design of HushList

The design of HushList is inspired by Git. The reference implementation is a command-line program which is a
very thin wrapper around an API, which is implemented as a various Perl modules. HushList uses many of the
same subcommands as Git which have intuitive meanings, which provide ”easy-onramps” to learn how to use the
CLI.

This document speci�es a protocol and the authors provide a reference implementation of this protocol in cross-
platform Perl which can be easily installed on millions of computers around the world via CPAN and other meth-
ods.

HushList should work across any platform that supports Perl and the coin being used. In this case, cryptocoins are
much less portable than Perl, so Perl will not be the limiting factor.

The reference implemenation is written in a maintainable and testable way such that it can easily evolve as the
Protocol evolves.

It is hoped that in the future there will be many implementations of HushList, running on various blockchains
and using various software stacks. The design of HushList is compatible with Simple Payment Veri�cation (SPV)
light wallets and a future version of HushList will learn to speak to an ElectrumX backend server, which natively
supports Hush as of the upcoming 1.2.1 release.

Reference Implementation

The reference implementation is developed as Free Software under the GNU Public License Version 3 on Github
at the following URL:

https://github.com/leto/hushlist

This code is still in active development, consider it EXPERIMENTAL and ONLY FOR DEVELOPERS at this point
pending a security review. This is the bleeding edge, folks.

The current reference implementation can send and receive memos, including �les on disk or simple strings of
text, as long as they are up to 512 bytes.

Multipart HushList memos (�le attachments) and public HushLists are still in development.

4

Account Funding

On �rst run, HushList creates a new shielded zaddress zF to fund transparent addresses for pseudonymous send-
ing via the z sendmanyRPC method.

It may be funded by the user from any taddr or zaddr with no loss of privacy.

For each pseudonym the user sends from (may be globally used or per-list), a taddr tL is created and a de-shielding
transaction is done from zF → tL which will allow the user to send memos to the given HushList on behalf of the tL

pseudonym. Since HushList memos have, by default, an amount of 0.0, all the costs associated with using HushList
are network costs. Users may additionally add a non-zero amount to a HushList memo.

For each HushList the user wants to be part of, HushList will create a brand new zaddress zL (it MUST NOT reuse
an existing address) and fund that address via a shielded z → z transaction between zF → zL.

If there are no taddr or zaddr funds in the entire wallet, HushListSHOULD present the user a taddr + zaddr which
can be used to ”top up” the current HushList wallet from another wallet/exchange/etc.

HushList Contacts

HushList maintains a database of contacts which use the address as the unique ID and additional metadata. Since
HushList supports multiple blockchains, it MUST have a contact database for each chain. Each chain MUST have
it’s own contact namespace, so you can have Bob on Hush and Bob and Zcash and they will not con�ict.

HushList internally associates lists to Contacts, not the address of a contact. This allows the user to update the
address of a contact in one place and things work correctly the next time the address of that contact is looked up.
Lists contain Contacts and Contacts have addresses.

A HushList contact may only have ONE address, either taddr or zaddr, but not both.

To have a taddr and zaddr for a person, you can simply create two contacts, such as tBob and zBob. In terms of
the metadata that is revealed when communicating with tBob or zBob, they are quite different, and it is healthy for
metadata minimization to consider them as two different contacts.

If one has the addresses for a set of contacts on multiple chains that are supported, say ZEC, HUSH and KMD, then
a user may send a memo to members across multiple blockchains to ensure delivery and subvert censorship of a
single chain.

HushList Creation

Private HushLists

A private HushList is simply a list of contacts stored locally and costs nothing. The Zcash protocol itself has a max
of 54 recipients in a z sendmanyRPC currently, so HushList implementations should not allow lists with more
than 54 recipients at this time.

Multi-Chain Private HushLists

A user may choose to send a HushList memo via multiple coins as long as there is a valid address for each Hush
Contact on for each coin. For example, if you have addresses for three of your friends on each of the HUSH, KMD
and ZEC chains, then you may choose to redundantly send a memo on all of the chains. This provides a backup of
the data on the other chains should one of them be blocked (such as dropping any packets for certain peer-to-peer
ports), �ltered or temporarily inaccessible.

5

Additionally a user may choose to send day-to-day memos on a inexpensive chain such as HUSH which has lower
network dif�culty and for things that need to have Bitcoin-level security, an archive copy to KMD can be sent.
KMD uses the delayed-Proof-Of-Work [dPOW] algorithm ensuring that once the information is engraved on the
Bitcoin blockchain, it would be required both blockchains in question to be compromised to prevent accessing
the data.

Public HushLists

A public HushList means publishing the PRIVATE KEY of a taddr (or potentially a zaddr) such that this address is
no longer owned by a single individual. By intentially publishing the PRIVATE KEY in a public place, the owner has
put all FUNDS and more importantly, the metadata of all transactions to that address, in the public domain.

By default, HushListMUST refuse to publicize the PRIVATE KEY of an address that has non-zero balance. HushList
implementations SHOULD protect users from accidental monetary loss in every way possible. Even so, a user
could accidentally send funds to an address that has been publicized and this very real confusion is still looking
for good answers.

Very recent developments in Zcash might allow the potential to use ”viewing keys” in the fture, but as this feature
has not been fully merged to master at this time and lacks a RPC interface, HushList chooses to use PRIVATE KEYS
which are core Zcash protocol that is well-supported in all forks. If ”viewing keys” are one day to be used, that
feature will need to be merged into multiple Zcash forks, which does not seem likely in the near-term.

Since creating a private HushList requires making a transaction on the network to store data in the memo-�eld,
it has a cost. This cost will be the fee of the transaction, most likely around 0.0001 but each chain is different and
fees obviously change as blockchains get more active.

List Subscription

When the private key for a list is imported into HushList, either from the blockchain, URI or manual entry, the
private key is added to the user’s wallet, along with a user entered or approved name and description for the list
(if provided in on-chain or uri encoded metadata). HushList creates a unique taddr + zaddr for each list so that the
user may choose to send each message to the list psuedonymously or anonymously or a mixture of both. There is
no loss of privacy to send memos to the same HushList with a psuedonym tAlice and an anon handle zBob if the
user so chooses.

Subscribing to a HushList is completely free, it is simply the act of importing data to your local wallet.

To faciliate applications being able to uniquely identify public HushLists we introduce a new URL scheme where
there username is the currency symbole of the cryptocoin and the password �eld is the network, i.e.

hushlist://COIN:NETWORK@K

COIN can be the currency symbol of a compatible cryptocoin such as HUSH (Hush) , KMD (Komodo) , ZEC (Zcash),
ZCL (ZClassic), ZEN (ZenCash) or BTCH (Bitcoin Hush).

NETWORK is will often be ”mainnet” but this schema allows for the very real use case of developers iterating
through various testnets and supports ”sidenets” for those that want to isolate data from mainnet.

K is the base58-formatted PRIVATE KEY as returned by the dumpprivkey RPC method of the associated coin.

When COIN and NETWORK are omitted, they default to HUSH and ”mainnet” respectively, so

hushlist://K

is equivalent to

hushlist://HUSH:mainnet@K

6

Additionally, URL parameters can be used to spe�cify a nickname and fee for the list to be imported:

hushlist://HUSH:mainnet@K?n=nickname&fee=X&height=N

The nickname and fee are just suggestions and the user MUST be able to modify them before importing the list. The
height is actually for performance reasons, and helps the local avoid scanning the entire history of the blockchain
for transactions.

The �rst public HushList can be uniquely identi�ed by the following URL

hushlist://SKxqPjNKvcfpmBpR8daQHNj4DoMfKmaPiVcT3A3YPynZNYXoDoaq

For performance reasons, we can help each node skip over 200,000 blocks �lled with transactions by specfying
the minimum block height for z importkey to look in. This more performant URL is:

hushlist://SKxqPjNKvcfpmBpR8daQHNj4DoMfKmaPiVcT3A3YPynZNYXoDoaq?height=215683

This HushList contains the �rst HushList memo, described in the sections below.

Sending To A List

One may send to a HushList from a taddr (pen name, psuedonym) or zaddr (anonymous shielded address) which
is implemented in the client via the z sendmanyRPC method. Up to 54 recepients may be in a single shielded
transaction. v1 of HushList only supports HushLists of this size, but v2 may implement larger HushLists by breaking
large recipient lists into multiple sends.

One may send a string of text via the *send* subcommand or send the contents of a �le via the *send-�le* sub-
command. If one sends a string of text, there is no metadata related to that at all, locally. It only exists encrypted
in a memo �eld on the chain. If one uses the *send-�le* command, it may be prudent to securely delete the �le
from the �lesystem after it is sent, depending on the needs of the user.

Each HushList has a dedicated default chain that it is attached to. When looking up HushList contacts for a given
list, their address on that chain will be retreived.

A unique feature of HushList is that speech=money, so you may always attach a non-zero amount of HUSH, ZEC,
KMD/etc to each memo to a HushList. Currently you must send each member of a HushList the same amount in
one memo, but you may send different amounts in different memos.

Receiving Messages

At any time later, after the transaction has entered the blockchain, memos sent to a given address can be down-
loaded and viewed by those parties who have valid private keys or viewing keys.

Clients can poll the local full node periodically at a user speci�able default interval OR, by default, the same as the
average block time for the chain in question. For the Hush chain, this is 2.5 minutes.

If for any reason a HushList user wants to PROVE with cryptographic certaintity that they knew certain information
at a certain time, all they would need to do is publish the PRIVATE KEY of an address which made the transaction
that contains the information.

This is the so-called ”investigative journalist” or ”whistle-blower” use case. An individual can send themselves
HushList memos ”just in case” they need to prove something in the future. This can be considered ”data as insur-
ance”.

7

Costs

Sending HushList memos requires making a �nancial transaction and by default, HushList sends the recipient a
transaction for 0.0 HUSH (or ZEC etc) with the default network fee (currently 0.0001 for ZEC +HUSH). The fee
amount MUST be con�gurable by the user. In the reference implementation of HushList it be changed via the
HUSHLIST FEE environment variable. Additionally, every HushList has it’s own con�gurable fee declared in the
con�guration �le for that list. The user may set a higher fee on some lists to ensure faster delivery while using
lower fees on other lists which are not as time sensitive.

Examples

The �rst HushList memo was a t → z transaction which also included a non-zero amount of 0.055555 HUSH. It is
viewable on the Hush block explorer here:

https://explorer.myhush.org/tx/30a38c7ba0929efb7cd54d3b724d9eb1d9cb03f35381a94d889bc4cffb0593bf

One may note that the zaddr associated with this transaction does not appear anywhere in the explorer, because
shielded addresses never show up directly in the public blockchain. Network transaction analysis is not possible
on zaddrs. The explorer only shows that a JoinSplit occured and that change was given to a taddr.

Nevertheless, the follow text is forever embedded in the 512 byte memo �eld of the above transaction:

A beginning is the time for taking the most delicate care that the balances are correct.

– ”Manual of Muad’Dib” by the Princess Irulan

Once men turned their thinking over to machines in the hope that this would set them free. But that
only permitted other men with machines to enslave them.

– Reverend Mother Gaius Helen Mohiam

Polish comes from the cities; wisdom from the desert.

– Arrakeen villager saying

Be prepared to appreciate what you meet.

– Fremen proverb

Note that the transaction does leak the metadata of the amount, since it was a de-shielding transaction, from t → z.
All HushList memos have amount=0.0 by default so this is not normally a concern.

Metadata Analysis

The biggest concern for metadata leakage in HushList is in de-shielding t → z transactions which leak amount
metadata.

The only time HushList does a de-shielding transaction is when the local wallet has 0 shielded value and it must
transfer value from a taddr OR when the user chooses to send from a psuedonymous taddr to a HushList.

The �rst case we call a ”shielded top-up” and happens rarely but we would not want to always have the same
default amount to ”top-up” because that amount can be searched for on the public chain. For this reason, we add
some noise to the exact amount of our topups. For instance, if the user wanted to move up to 1 HUSH, we would
generate a random number between 0.9 and 1.0 and then subtract it from the top-up amount. Then all HushList
users wouldhave slightly different top-up amount instead of a few easily searchable amounts.

8

In the second case, normal transactions will have amount=0 which will stand out and network transaction analysis
is possible. If these psuedonyms choose to actually send non-zero amounts, network analsysis can be made harder
since most HushList messages use amount=0.

User Stories

This section contains various ”User Stories” of how potential users can use the various features of the HushList
protocol to meet their needs.

”Pen Name” user story - Amanda

Let Amanda have a transparent address tA and let there be a PUBLIC HushList with shielded address zL.

Amanda sends HushList memos from tA to a PUBLIC HushList with a de-shielding transaction, ie.

tA → zL.

Any person who is subscribed to this public HushList will be able to see Amandas memos, yet Amandas identity
is ”psuedonymous”, i.e. everybody knows that every message from tA is the same person, but her identity remains
unknown. If at any time in the future, Amanda would like to *cryptographically prove* that she is the identity
behind tA, all she must do is publish the PRIVATE KEY of tA. If any transparent value resides in tA, it can simply be
moved to another address before publication.

Of course Amanda is free to never reveal her identity and remain a psuedonym inde�nitely.

Amanda needs to be concerned about her IP address being tied to tA by a passive network attacker who records
the Internet and is encouraged to use a proxy, Tor or other means depending on risk and operational security
needs.

Last Will And Testament User Story - Xerxes

Xerxes would like to store a copy of their Last Will And Testament in multiple secure locations, where they cannot
be lost nor destroyed by parties that would bene�t from the destruction of the Will.

Xerxes can use HushList protocol to store their will in many different blockchains, in the hopes that at least one
will survive longer than him, and to prevent censorship if he only stored the data on one chain. Xerxes can choose
to additionally make the will public initially, or after some time period, or only leave instructions for retreiving the
will with executors of their Estate.

This use case also supports the continual updating of a Will, and provides a record of all the changes to a will,
with timestamps and cryptographic certainty. This record can be veri�ed by any and all exectuors, with or without
making the records public. Indeed, a public HushList can be used to provide instructions and the actual Will, and
newer memos to that list are public proof that the person has changed their Will.

”Oppressed Minority” user story - Francesca and Nicolau

Francesca and Nicalau live in a place where their local religion/government/organization is oppressed by a larger
religion/government/organication that controls everything around them, yet they still want to safely communicate.

”Security Researcher” user story - Gordon

Dana wants to communicate 0-day exploits about nation-state infrastructure to the people that run this critical
infrastructure, without anybody else listening in on this very sensitive information.

9

”Whisteblower” user story - Martha

Martha has data about something that must be transported from internal-only systems, to external places, prefer-
ably many, while knowing that the data is not tampered with or even viewed until the appropriate time.

”Censored Journalist” user story - Billy

This is an extension of the ”Pen Name” User Story. Let’s say that for some reason a journalist Billy is already known
publicly, but is censored from all media locally in various places. Billy can use HushList to publish his writing (and
also source data, encrypted or not) to multiple blockchains to make it permanently mirrored across thousands of
servers and very hard to censor.

Special Thanks

A special thanks to Daira Hopwood for an inspring Zcash Protocol document and for making the LATEXinfrastructure
open source, which was used to make this document. HushList is built on the shoulders of giants and to all the
people that have made the Bitcoin and Zcash ecosystems what they are, thank you.

Additionally, a special thanks to the Komodo Platform[Komodo], which has embraced Hush as one of the �rst
cryptocoins to be added to their BarterDEX [BarterDEX] atomic swap platform and continues to support the Hush
Community in various ways.

References

[BarterDEX] jl777. barterDEX - Atomic Swap Decentralized Exchange of Native Coins. URL: https://github.
com/SuperNETorg/komodo/wiki/barterDEX-Whitepaper-v2 (visited on 2017-12-28) (↑ p10).

[Bitcoin] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. October 31, 2008. URL:
https://bitcoin.org/en/bitcoin-paper (visited on 2016-08-14) (↑ p1).

[Bitcoin-Protocol] Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol_
documentation (visited on 2016-10-02) (↑ p3).

[dPOW] jl777. Delayed Proof of Work (dPoW). URL: https://supernet.org/en/technology/whitepapers/
delayed-proof-of-work-dpow (visited on 2017-12-27) (↑ p6).

[Komodo] superNET. Komodo Platform. URL: https : / / komodoplatform . com (visited on 2017-12-28)
(↑ p10).

[RFC-2119] Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://tools.ietf.org/
html/rfc2119 (visited on 2016-09-14) (↑ p3).

[Zcash] Daira Hopwood. Zcash Protocol Speci�cation. URL: https://github.com/zcash/zips/blob/
master/protocol/protocol.pdf (visited on 2017-12-28) (↑ p1).

10

https://github.com/SuperNETorg/komodo/wiki/barterDEX-Whitepaper-v2
https://github.com/SuperNETorg/komodo/wiki/barterDEX-Whitepaper-v2
https://bitcoin.org/en/bitcoin-paper
https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://supernet.org/en/technology/whitepapers/delayed-proof-of-work-dpow
https://supernet.org/en/technology/whitepapers/delayed-proof-of-work-dpow
https://komodoplatform.com
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf

	Contents
	1 Introduction
	1.1 High-level Overview
	1.2 Types Of Transactions

	2 Design of HushList
	3 Reference Implementation
	4 Account Funding
	5 HushList Contacts
	6 HushList Creation
	6.1 Private HushLists
	6.2 Multi-Chain Private HushLists
	6.3 Public HushLists

	7 List Subscription
	8 Sending To A List
	9 Receiving Messages
	10 Costs
	11 Examples
	12 Metadata Analysis
	13 User Stories
	13.1 "Pen Name" user story - Amanda
	13.2 Last Will And Testament User Story - Xerxes
	13.3 "Oppressed Minority" user story - Francesca and Nicolau
	13.4 "Security Researcher" user story - Gordon
	13.5 "Whisteblower" user story - Martha
	13.6 "Censored Journalist" user story - Billy

	14 Special Thanks
	15 References

