
HushList Protocol Speci�cation
Version

David Mercer†

Duke Leto†

December 24, 2017

Abstract.
HushList is a protocol for mailing lists using the encrypted memo �eld of the Zcash protocol. It

supports anonymous and pseudonymous senders, receivers and Hushlist creators, as well as public
and private lists. The HushList protocol can run on any fork of Zcash that has a compatible memo �eld,
though certain advanced features might not be fully supported on all chains. HushList is developed and
tested on the Hush and Zcash mainnets as well as testnets (TUSH and TAZ), next to be tested is Komodo
(KMD).

In addition to the above properties, HushList provides users with censorship-resistant storage and
retrieval, since every Hush full node will have an encrypted copy of every HushList memo. Further-
more, sending and receiving via one or more blockchains is a serious deviation from traditional server-
client design which easily allows a Man-In-The-Middle Attack and Deep Packet Inspection (DPI). Net-
work traf�c monitoring and correlation is made much harder, because there is no longer a packet with
a timestamp and ”selectors” going from one unique IP to another unique IP via a very predictable net-
work route.

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with se-
curity �xes and adjustments to terminology, functionality and performance. It bridges the existing
transparent payment scheme used by Bitcoin with a shielded payment scheme secured by zero-
knowledge succinct non-interactive arguments of knowledge (zk-SNARKs).

Hush is a fork of the Zcash codebase (1.0.9) which generated it’s own genesis block and uses the
Zcash Sprout proving key.

This speci�cation de�nes the HushList communication protocol and explains how it builds on the
foundation of Zcash and Bitcoin.

Keywords: anonymity, freedom of speech, cryptographic protocols, electronic commerce and pay-
ment, �nancial privacy, proof of work, zero knowledge.

Contents 1

1 Introduction 3

1.1 High-level Overview . 3

2 Design of HushList 3

† Hush Core Developers

1

3 Reference Implementation 4

4 Account Funding 4

5 HushList Contacts 4

6 List Creation 5

7 List Subscription 5

8 Sending To A List 5

9 Receiving Messages 6

10 Costs 6

11 Examples 6

12 Metadata Analysis 7

13 References 7

2

Introduction

HushList is a protocol for anonymous mailing lists using the encrypted memo �eld of the zcash protocol.

Technical terms for concepts that play an important role in HushList are written in slanted text . Italics are used
for emphasis and for references between sections of the document.

The key words MUST, MUST NOT, SHOULD, and SHOULD NOT in this document are to be interpreted as described
in [RFC-2119] when they appear in ALL CAPS. These words may also appear in this document in lower case as plain
English words, absent their normative meanings.

This speci�cation is structured as follows:

• Notation — de�nitions of notation used throughout the document;

• Concepts — the principal abstractions needed to understand the protocol;

• Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;

• Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

• Implications

High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin or Zcash.

XXX

Value in Hush is either transparent or shielded . Transfers of transparent value work essentially as in Bitcoin and
have the same privacy properties. Shielded value is carried by notes , which specify an amount and a paying key.
The paying key is part of a payment address , which is a destination to which notes can be sent. As in Bitcoin, this is
associated with a private key that can be used to spend notes sent to the address; in Hush this is called a spending
key.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol].
It also contains a sequence of zero or more JoinSplit descriptions . Each of these describes a JoinSplit transfer
which takes in a transparent value and up to two input notes , and produces a transparent value and up to two
output notes .

Each HushListMUST have a default blockchain that it is attached to, and the default chain SHOULD be HUSH. The
user MUST be able to set their GLOBAL default chain (not implemented yet) as well as a default chain for each list.

Each list also has a tadd+zaddr dedicated to that list, so the user has dedicated addresses to send psuedo/anon
messages, as well as default fee and amount. The default amount is 0.0 and the default fee is currently 0.0001 but
these numbers are subject to change.

HushList supports �le attachments and embedding arbitrary binary data, it is not limited to ASCII.

Design of HushList

The design of HushList is inspired by Git. The reference implementation is a command-line program which is a
very thin wrapper around an API, which is implemented as a various Perl modules. HushList uses many of the
same subcommands as Git which have intuitive meanings, which provide ”easy-onramps” to learn how to use the
CLI.

3

This document speci�es a protocol and the authors provide a reference implementation of this protocol in cross-
platform Perl which can be easily installed on millions of computers around the world via CPAN and other meth-
ods.

HushList should work across any platform that supports Perl and Hush (or your other coin).

The reference implemenation is written in a maintainable and testable way such that it can easily evolve as the
Protocol evolves.

It is hoped that in the future there will be many implementations of HushList, running on various blockchains and
using various software stacks. The design of HushList is compatible with Simple Payment Veri�cation (SPV) light
wallets and a future version of HushList will learn to speak an ElectrumX backend server.

Reference Implementation

The reference implementation is developed as Free Software on Github at the following URL:

https://github.com/leto/hushlist

This code is still in active development, consider it EXPERIMENTAL and ONLY FOR DEVELOPERS at this point
pending a security review.

Account Funding

On �rst run, HushList creates a new shielded zaddress zF to fund transparent addresses for pseudonymous send-
ing.

It may be funded by the user from any taddr or zaddr with no loss of privacy.

For each pseudonym the user sends from (may be globally used or per-list), a taddr tL is created and a de-shielding
transaction is done from zF → tL which will allow the user to send memos to the given HushList on behalf of the tL

pseudonym. Since HushList memos have, by default, an amount of 0.0, all the costs associated with using HushList
are network costs. Users may additionally add a non-zero amount to a HushList memo.

For each HushList the user wants to be part of, HushList will create a brand new zaddress zL (it MUST NOT reuse
an existing address) and fund that address via a shielded z → z transaction between zF → zL.

If there are no taddr or zaddr funds in the entire wallet, HushListSHOULD present the user a taddr + zaddr which
can be used to ”top up” the current HushList wallet from another wallet/exchange/etc.

HushList Contacts

HushList maintains a database of contacts which use the address as the unique ID and additional metadata. Since
HushList supports multiple blockchains, it MUST have a contact database for each chain. Each chain MUST have
it’s own contact namespace, so you can have Bob on Hush and Bob and Zcash and they will not con�ict.

HushList internally associates lists to Contacts, not the address of a contact. This allows the user to update the
address of a contact in one place and things work correctly the next time the address of that contact is looked up.
Lists contain Contacts and Contacts have addresses.

A HushList contact may only have ONE address, either taddr or zaddr, but not both.

To have a taddr and zaddr for a person, you can simply create two contacts, such as tBob and zBob. In terms of
the metadata that is revealed when communicating with tBob or zBob, they are quite different, and it is healthy for
metadata minimization to consider them as two different contacts.

4

List Creation

A private HushList is simply a list of contacts stored locally and costs nothing. The Zcash protocol itself has a max
of 54 recipients currently, so HushList implementations should not allow lists with more than 54 recipients at this
time.

A public HushList means publishing the PRIVATE KEY of a taddr (or potentially a zaddr) such that this address is
no longer owned by a single individual. By intentially publishing the PRIVATE KEY in a public place, the owner has
put all FUNDS and more importantly, the metadata of all transactions to that address, in the public domain.

By default, HushListMUST refuse to publicize the PRIVATE KEY of an address that has non-zero balance. HushList
implementations SHOULD protect users from accidental monetary loss in every way possible. Even so, a user
could accidentally send funds to an address that has been publicized and this very real confusion is still looking
for good answers.

Very recent developments in Zcash might allow the potential to use ”viewing keys” in the fture, but as this feature
has not been fully merged to master at this time and lacks a RPC interface, HushList chooses to use PRIVATE KEYS
which are core Zcash protocol that is well-supported in all forks. If ”viewing keys” are one day to be used, that
feature will need to be merged into multiple Zcash forks, which does not seem likely in the near-term.

Since creating a private HushList requires making a transaction on the network to store data in the memo-�eld,
it has a cost. This cost will be the fee of the transaction, most likely around 0.0001 but each chain is different and
fees obviously change as blockchains get more active.

List Subscription

When the private key for a list is imported into HushList, either from the blockchain, URI or manual entry, the
private key is added to the user’s wallet, along with a user entered or approved name and description for the list
(if provided in on-chain or uri encoded metadata). HushList creates a unique taddr + zaddr for each list so that the
user may choose to send each message to the list psuedonymously or anonymously or a mixture of both. There is
no loss of privacy to send memos to the same HushList with a psuedonym tAlice and an anon handle zBob if the
user so chooses.

Subscribing to a HushList is completely free, it is simply the act of importing data to your local wallet.

Sending To A List

One may send to a HushList from a taddr (pen name, psuedonym) or zaddr (anonymous shielded address) which
is implemented in the client via the z sendmany RPC command. Up to 54 recepients may be in a single shielded
transaction. v1 of HushList only supports HushLists of this size, but v2 may implement larger HushLists by breaking
large recipient lists into multiple sends.

One may send a string of text via the *send* subcommand or send the contents of a �le via the *send-�le* sub-
command. If one sends a string of text, there is no metadata related to that at all, locally. It only exists encrypted
in a memo �eld on the chain. If one uses the *send-�le* command, it may be prudent to securely delete the �le
from the �lesystem after it is sent, depending on the needs of the user.

Each HushList has a dedicated default chain that it is attached to. When looking up HushList contacts for a given
list, their address on that chain will be retreived.

Aunique feature of HushList is that speech=money, so you mayalways attach a non-zero amount of HUSH,ZEC,KMD/etc
to each memo to a HushList. Currently you must send each member of a HushList the same amount in one memo,
but you may send different amounts in different memos.

5

Receiving Messages

At any time later, after the transaction has entered the blockchain, memos sent to a given address can be down-
loaded and viewed by those parties who have valid private keys or viewing keys.

Clients can poll the local full node periodically at a user speci�able default interval OR, by default, the same as the
average block time for the chain in question. For the Hush chain, this is 2.5 minutes.

If for any reason a HushList user wants to PROVE with cryptographic certaintity that they knew certain information
at a certain time, all they would need to do is publish the PRIVATE KEY of an address which made the transaction
that contains the information.

This is the so-called ”investigative journalist” or ”whistle-blower” use case. An individual can send themselves
HushList memos ”just in case” they need to prove something in the future. This can be considered ”data as insur-
ance”.

Costs

Sending HushList memos requires making a �nancial transaction and by default, HushList sends the recipient a
transaction for 0.0 HUSH (or ZEC etc) with the default network fee (currently 0.0001 for ZEC +HUSH). The fee
amount MUST be con�gurable by the user. In the reference implementation of HushList it be changed via the
HUSHLIST FEE environment variable. Additionally, every HushList has it’s own con�gurable fee declared in the
con�guration �le for that list. The user may set a higher fee on some lists to ensure faster delivery while using
lower fees on other lists which are not as time sensitive.

Examples

The �rst HushList memo was a t → z transaction which also included a non-zero amount of 0.055555 HUSH. It is
viewable on the Hush block explorer here:

https://explorer.myhush.org/tx/30a38c7ba0929efb7cd54d3b724d9eb1d9cb03f35381a94d889bc4cffb0593bf

One may note that the zaddr

zcZpJreyJqmNJ3fUJekvbnyuxuJe9eAURAHrMCvN2Nr7VuWjakb1LEw6j2etPcCnr45BRot7MaMbipuS5da162BfuUkFGLj

does not appear anywhere in the explorer, because shielded addresses never show up directly in the public
blockchain. Network transaction analysis is not possible on zaddrs. The explorer only shows that a JoinSplit oc-
cured and that change was given to a taddr.

Nevertheless, the follow text is forever embedded in the 512 byte memo �eld of the above transaction:

A beginning is the time for taking the most delicate care that the balances are correct. – ”Manual of
Muad’Dib” by the Princess Irulan

Once men turned their thinking over to machines in the hope that this would set them free. But that
only permitted other men with machines to enslave them. – Reverend Mother Gaius Helen Mohiam

Polish comes from the cities; wisdom from the desert. – Arrakeen villager saying
Be prepared to appreciate what you meet. – Fremen proverb

Note that the transaction does leak the metadata of the amount, since it was a de-shielding transaction, from t → z.
All HushList memos have amount=0.0 by default so this is not normally a concern.

6

Metadata Analysis

The biggest concern for metadata leakage in HushList is in de-shielding t → z transactions which leak amount
metadata.

The only time HushList does a de-shielding transaction is when the local wallet has 0 shielded value and it must
transfer value from a taddr OR when the user chooses to send from a psuedonymous taddr to a HushList.

The �rst case we call a ”shielded top-up” and happens rarely but we would not want to always have the same
default amount to ”top-up” because that amount can be searched for on the public chain. For this reason, we add
some noise to the exact amount of our topups. For instance, if the user wanted to move up to 1 HUSH, we would
generate a random number between 0.9 and 1.0 and then subtract it from the top-up amount. Then all HushList
users wouldhave slightly different top-up amount instead of a few easily searchable amounts.

In the second case, normal transactions will have amount=0 which will stand out and network transaction analysis
is possible. If these psuedonyms choose to actually send non-zero amounts, network analsysis can be made harder
since most HushList messages use amount=0.

References

[Bitcoin-Protocol] Protocol documentation — Bitcoin Wiki. URL: https://en.bitcoin.it/wiki/Protocol_
documentation (visited on 2016-10-02) (↑ p3).

[RFC-2119] Scott Bradner. Request for Comments 7693: Key words for use in RFCs to Indicate Requirement
Levels. Internet Engineering Task Force (IETF). March 1997. URL: https://tools.ietf.org/
html/rfc2119 (visited on 2016-09-14) (↑ p3).

7

https://en.bitcoin.it/wiki/Protocol_documentation
https://en.bitcoin.it/wiki/Protocol_documentation
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

	Contents
	1 Introduction
	1.1 High-level Overview

	2 Design of HushList
	3 Reference Implementation
	4 Account Funding
	5 HushList Contacts
	6 List Creation
	7 List Subscription
	8 Sending To A List
	9 Receiving Messages
	10 Costs
	11 Examples
	12 Metadata Analysis
	13 References

