A modern, portable, easy to use crypto library.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

288 lines
8.6 KiB

/*
* AEGIS-256 based on https://bench.cr.yp.to/supercop/supercop-20190816.tar.xz
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include "core.h"
#include "crypto_aead_aegis256.h"
#include "crypto_verify_16.h"
#include "export.h"
#include "randombytes.h"
#include "runtime.h"
#include "utils.h"
#include "private/common.h"
#include "private/sse2_64_32.h"
#if defined(HAVE_TMMINTRIN_H) && defined(HAVE_WMMINTRIN_H)
#ifdef __GNUC__
# pragma GCC target("ssse3")
# pragma GCC target("aes")
#endif
#include <tmmintrin.h>
#include <wmmintrin.h>
static inline void
crypto_aead_aegis256_update(__m128i *const state, const __m128i data)
{
__m128i tmp;
tmp = _mm_aesenc_si128(state[5], state[0]);
state[5] = _mm_aesenc_si128(state[4], state[5]);
state[4] = _mm_aesenc_si128(state[3], state[4]);
state[3] = _mm_aesenc_si128(state[2], state[3]);
state[2] = _mm_aesenc_si128(state[1], state[2]);
state[1] = _mm_aesenc_si128(state[0], state[1]);
state[0] = _mm_xor_si128(tmp, data);
}
static void
crypto_aead_aegis256_init(const unsigned char *key, const unsigned char *iv, __m128i *const state)
{
__m128i k1;
__m128i k2;
__m128i k3;
__m128i k4;
int i;
k1 = _mm_loadu_si128((__m128i *) &key[0]);
k2 = _mm_loadu_si128((__m128i *) &key[16]);
k3 = _mm_xor_si128(k1, _mm_loadu_si128((__m128i *) &iv[0]));
k4 = _mm_xor_si128(k2, _mm_loadu_si128((__m128i *) &iv[16]));
state[0] = k3;
state[1] = k4;
state[2] = _mm_set_epi8(0xdd, 0x28, 0xb5, 0x73, 0x42, 0x31, 0x11, 0x20, 0xf1, 0x2f, 0xc2, 0x6d,
0x55, 0x18, 0x3d, 0xdb);
state[3] = _mm_set_epi8(0x62, 0x79, 0xe9, 0x90, 0x59, 0x37, 0x22, 0x15, 0x0d, 0x08, 0x05, 0x03,
0x02, 0x01, 0x01, 0x00);
state[4] = _mm_xor_si128(k1, state[3]);
state[5] = _mm_xor_si128(k2, state[2]);
for (i = 0; i < 4; i++) {
crypto_aead_aegis256_update(state, k1);
crypto_aead_aegis256_update(state, k2);
crypto_aead_aegis256_update(state, k3);
crypto_aead_aegis256_update(state, k4);
}
}
static void
crypto_aead_aegis256_mac(unsigned char *mac, unsigned long long mlen, unsigned long long adlen,
__m128i *const state)
{
__m128i tmp;
int i;
tmp = _mm_set_epi64x(mlen << 3, adlen << 3);
tmp = _mm_xor_si128(tmp, state[3]);
for (i = 0; i < 7; i++) {
crypto_aead_aegis256_update(state, tmp);
}
tmp = _mm_xor_si128(state[5], state[4]);
tmp = _mm_xor_si128(tmp, state[3]);
tmp = _mm_xor_si128(tmp, state[2]);
tmp = _mm_xor_si128(tmp, state[1]);
tmp = _mm_xor_si128(tmp, state[0]);
_mm_storeu_si128((__m128i *) mac, tmp);
}
static void
crypto_aead_aegis256_enc(unsigned char *const dst, const unsigned char *const src,
__m128i *const state)
{
__m128i msg;
__m128i tmp;
msg = _mm_loadu_si128((__m128i *) src);
tmp = _mm_xor_si128(msg, state[5]);
tmp = _mm_xor_si128(tmp, state[4]);
tmp = _mm_xor_si128(tmp, state[1]);
tmp = _mm_xor_si128(tmp, _mm_and_si128(state[2], state[3]));
_mm_storeu_si128((__m128i *) dst, tmp);
crypto_aead_aegis256_update(state, msg);
}
static void
crypto_aead_aegis256_dec(unsigned char *const dst, const unsigned char *const src,
__m128i *const state)
{
__m128i msg;
msg = _mm_loadu_si128((__m128i *) src);
msg = _mm_xor_si128(msg, state[5]);
msg = _mm_xor_si128(msg, state[4]);
msg = _mm_xor_si128(msg, state[1]);
msg = _mm_xor_si128(msg, _mm_and_si128(state[2], state[3]));
_mm_storeu_si128((__m128i *) dst, msg);
crypto_aead_aegis256_update(state, msg);
}
int
crypto_aead_aegis256_encrypt_detached(unsigned char *c, unsigned char *mac,
unsigned long long *maclen_p, const unsigned char *m,
unsigned long long mlen, const unsigned char *ad,
unsigned long long adlen, const unsigned char *nsec,
const unsigned char *npub, const unsigned char *k)
{
__m128i state[6];
CRYPTO_ALIGN(16) unsigned char src[16];
CRYPTO_ALIGN(16) unsigned char dst[16];
unsigned long long i;
(void) nsec;
crypto_aead_aegis256_init(k, npub, state);
for (i = 0ULL; i + 16ULL <= adlen; i += 16ULL) {
crypto_aead_aegis256_enc(dst, ad + i, state);
}
if (adlen & 0xf) {
memset(src, 0, 16);
memcpy(src, ad + i, adlen & 0xf);
crypto_aead_aegis256_enc(dst, src, state);
}
for (i = 0ULL; i + 16ULL <= mlen; i += 16ULL) {
crypto_aead_aegis256_enc(c + i, m + i, state);
}
if (mlen & 0xf) {
memset(src, 0, 16);
memcpy(src, m + i, mlen & 0xf);
crypto_aead_aegis256_enc(dst, src, state);
memcpy(c + i, dst, mlen & 0xf);
}
crypto_aead_aegis256_mac(mac, mlen, adlen, state);
sodium_memzero(state, sizeof state);
sodium_memzero(src, sizeof src);
sodium_memzero(dst, sizeof dst);
if (maclen_p != NULL) {
*maclen_p = 16ULL;
}
return 0;
}
int
crypto_aead_aegis256_encrypt(unsigned char *c, unsigned long long *clen_p, const unsigned char *m,
unsigned long long mlen, const unsigned char *ad,
unsigned long long adlen, const unsigned char *nsec,
const unsigned char *npub, const unsigned char *k)
{
unsigned long long clen = 0ULL;
int ret;
if (mlen > crypto_aead_aegis256_MESSAGEBYTES_MAX) {
sodium_misuse();
}
ret = crypto_aead_aegis256_encrypt_detached(c, c + mlen, NULL, m, mlen,
ad, adlen, nsec, npub, k);
if (clen_p != NULL) {
if (ret == 0) {
clen = mlen + 16ULL;
}
*clen_p = clen;
}
return ret;
}
int
crypto_aead_aegis256_decrypt_detached(unsigned char *m, unsigned char *nsec, const unsigned char *c,
unsigned long long clen, const unsigned char *mac,
const unsigned char *ad, unsigned long long adlen,
const unsigned char *npub, const unsigned char *k)
{
__m128i state[6];
CRYPTO_ALIGN(16) unsigned char src[16];
CRYPTO_ALIGN(16) unsigned char dst[16];
CRYPTO_ALIGN(16) unsigned char computed_mac[16];
unsigned long long i;
unsigned long long mlen;
int ret;
(void) nsec;
mlen = clen;
crypto_aead_aegis256_init(k, npub, state);
for (i = 0ULL; i + 16ULL <= adlen; i += 16ULL) {
crypto_aead_aegis256_enc(dst, ad + i, state);
}
if (adlen & 0xf) {
memset(src, 0, 16);
memcpy(src, ad + i, adlen & 0xf);
crypto_aead_aegis256_enc(dst, src, state);
}
if (m != NULL) {
for (i = 0ULL; i + 16ULL <= mlen; i += 16ULL) {
crypto_aead_aegis256_dec(m + i, c + i, state);
}
} else {
for (i = 0ULL; i + 16ULL <= mlen; i += 16ULL) {
crypto_aead_aegis256_dec(dst, c + i, state);
}
}
if (mlen & 0xf) {
memset(src, 0, 16);
memcpy(src, c + i, mlen & 0xf);
crypto_aead_aegis256_dec(dst, src, state);
if (m != NULL) {
memcpy(m + i, dst, mlen & 0xf);
}
memset(dst, 0, mlen & 0xf);
state[0] = _mm_xor_si128(state[0], _mm_loadu_si128((__m128i *) dst));
}
crypto_aead_aegis256_mac(computed_mac, mlen, adlen, state);
sodium_memzero(state, sizeof state);
sodium_memzero(src, sizeof src);
sodium_memzero(dst, sizeof dst);
ret = crypto_verify_16(computed_mac, mac);
sodium_memzero(computed_mac, sizeof computed_mac);
if (m == NULL) {
return ret;
}
if (ret != 0) {
memset(m, 0, mlen);
return -1;
}
return 0;
}
int
crypto_aead_aegis256_decrypt(unsigned char *m, unsigned long long *mlen_p, unsigned char *nsec,
const unsigned char *c, unsigned long long clen,
const unsigned char *ad, unsigned long long adlen,
const unsigned char *npub, const unsigned char *k)
{
unsigned long long mlen = 0ULL;
int ret = -1;
if (clen >= 16ULL) {
ret = crypto_aead_aegis256_decrypt_detached(m, nsec, c, clen - 16ULL, c + clen - 16ULL, ad,
adlen, npub, k);
}
if (mlen_p != NULL) {
if (ret == 0) {
mlen = clen - 16ULL;
}
*mlen_p = mlen;
}
return ret;
}
int
crypto_aead_aegis256_is_available(void)
{
return sodium_runtime_has_armcrypto();
}
#endif