Browse Source

Support for C++11

Optional support for C++11 features
master
Nemanja Trifunovic 5 years ago
parent
commit
2b8596149e
  1. 3
      CMakeLists.txt
  2. 326
      README.md
  3. 16
      samples/docsample.cpp
  4. 4
      source/utf8.h
  5. 103
      source/utf8/cpp11.h
  6. 78
      test_drivers/smoke_test/cpp11.cpp

3
CMakeLists.txt

@ -32,12 +32,15 @@ endif()
if(UTF8_TESTS)
add_executable(smoke ${PROJECT_SOURCE_DIR}/test_drivers/smoke_test/test.cpp)
add_executable(cpp11 ${PROJECT_SOURCE_DIR}/test_drivers/smoke_test/cpp11.cpp)
add_executable(negative ${PROJECT_SOURCE_DIR}/test_drivers/negative/negative.cpp)
target_link_libraries(smoke PRIVATE utf8::cpp)
target_link_libraries(cpp11 PRIVATE utf8::cpp)
target_link_libraries(negative PRIVATE utf8::cpp)
enable_testing()
add_test(smoke_test smoke)
add_test(cpp11_test cpp11)
add_test(negative_test negative ${PROJECT_SOURCE_DIR}/test_data/negative/utf8_invalid.txt)
endif()

326
README.md

@ -3,7 +3,7 @@
## Introduction
Many C++ developers miss an easy and portable way of handling Unicode encoded strings. The original C++ Standard (known as C++98 or C++03) is Unicode agnostic. C++11 provides some support for Unicode on core language and library level: u8, u, and U character and string literals, char16_t and char32_t character types, u16string and u32string library classes, and codecvt support for conversions between Unicode encoding forms. In the meantime, developers use third party libraries like ICU, OS specific capabilities, or simply roll out their own solutions.
C++ developers miss an easy and portable way of handling Unicode encoded strings. The original C++ Standard (known as C++98 or C++03) is Unicode agnostic. C++11 provides some support for Unicode on core language and library level: u8, u, and U character and string literals, char16_t and char32_t character types, u16string and u32string library classes, and codecvt support for conversions between Unicode encoding forms. In the meantime, developers use third party libraries like ICU, OS specific capabilities, or simply roll out their own solutions.
In order to easily handle UTF-8 encoded Unicode strings, I came up with a small, C++98 compatible generic library. For anybody used to work with STL algorithms and iterators, it should be easy and natural to use. The code is freely available for any purpose - check out the [license](./LICENSE). The library has been used a lot in the past ten years both in commercial and open-source projects and is considered feature-complete now. If you run into bugs or performance issues, please let me know and I'll do my best to address them.
@ -28,50 +28,74 @@ int main(int argc, char** argv)
cout << "\nUsage: docsample filename\n";
return 0;
}
const char* test_file_path = argv[1];
// Open the test file (contains UTF-8 encoded text)
// Open the test file (must be UTF-8 encoded)
ifstream fs8(test_file_path);
if (!fs8.is_open()) {
cout << "Could not open " << test_file_path << endl;
return 0;
cout << "Could not open " << test_file_path << endl;
return 0;
}
unsigned line_count = 1;
string line;
// Play with all the lines in the file
while (getline(fs8, line)) {
// check for invalid utf-8 (for a simple yes/no check, there is also utf8::is_valid function)
// check for invalid utf-8 (for a simple yes/no check, there is also utf8::is_valid function)
#if __cplusplus >= 201103L // C++ 11 or later
auto end_it = utf8::find_invalid(line.begin(), line.end());
#else
string::iterator end_it = utf8::find_invalid(line.begin(), line.end());
#endif // C++ 11
if (end_it != line.end()) {
cout << "Invalid UTF-8 encoding detected at line " << line_count << "\n";
cout << "This part is fine: " << string(line.begin(), end_it) << "\n";
}
// Get the line length (at least for the valid part)
int length = utf8::distance(line.begin(), end_it);
cout << "Length of line " << line_count << " is " << length << "\n";
// Convert it to utf-16
#if __cplusplus >= 201103L // C++ 11 or later
u16string utf16line = utf8::utf8to16(line);
#else
vector<unsigned short> utf16line;
utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line));
// And back to utf-8
#endif // C++ 11
// And back to utf-8;
#if __cplusplus >= 201103L // C++ 11 or later
string utf8line = utf8::utf16to8(utf16line);
#else
string utf8line;
utf8::utf16to8(utf16line.begin(), utf16line.end(), back_inserter(utf8line));
#endif // C++ 11
// Confirm that the conversion went OK:
if (utf8line != string(line.begin(), end_it))
cout << "Error in UTF-16 conversion at line: " << line_count << "\n";
line_count++;
}
}
return 0;
}
```
In the previous code sample, for each line we performed a detection of invalid UTF-8 sequences with `find_invalid`; the number of characters (more precisely - the number of Unicode code points, including the end of line and even BOM if there is one) in each line was determined with a use of `utf8::distance`; finally, we have converted each line to UTF-16 encoding with `utf8to16` and back to UTF-8 with `utf16to8`.
Note a different pattern of usage for old compilers. For instance, this is how we convert
a UTF-8 encoded string to a UTF-16 encoded one with a pre - C++11 compiler:
```cpp
vector<unsigned short> utf16line;
utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line));
```
With a more modern compiler, the same operation would look like:
```cpp
u16string utf16line = utf8::utf8to16(line);
```
If `__cplusplus` macro points to a C++ 11 or later, the library exposes API that takes into
account C++ standard Unicode strings and move semantics. With an older compiler, it is still
possible to use the same functionality, just in a little less convenient way.
### Checking if a file contains valid UTF-8 text
Here is a function that checks whether the content of a file is valid UTF-8 encoded text without reading the content into the memory:
@ -113,10 +137,56 @@ void fix_utf8_string(std::string& str)
The function will replace any invalid UTF-8 sequence with a Unicode replacement character. There is an overloaded function that enables the caller to supply their own replacement character.
## Points of interest
#### Design goals and decisions
The library was designed to be:
1. Generic: for better or worse, there are many C++ string classes out there, and the library should work with as many of them as possible.
2. Portable: the library should be portable both accross different platforms and compilers. The only non-portable code is a small section that declares unsigned integers of different sizes: three typedefs. They can be changed by the users of the library if they don't match their platform. The default setting should work for Windows (both 32 and 64 bit), and most 32 bit and 64 bit Unix derivatives. Support for post C++03 language features is included for modern compilers at API level only, so the library should work even with pretty old compilers.
3. Lightweight: follow the "pay only for what you use" guideline.
4. Unintrusive: avoid forcing any particular design or even programming style on the user. This is a library, not a framework.
#### Alternatives
In case you want to look into other means of working with UTF-8 strings from C++, here is the list of solutions I am aware of:
1. [ICU Library](http://icu.sourceforge.net/). It is very powerful, complete, feature-rich, mature, and widely used. Also big, intrusive, non-generic, and doesn't play well with the Standard Library. I definitelly recommend looking at ICU even if you don't plan to use it.
2. C++11 language and library features. Still far from complete, and not easy to use.
3. [Glib::ustring](http://www.gtkmm.org/gtkmm2/docs/tutorial/html/ch03s04.html). A class specifically made to work with UTF-8 strings, and also feel like `std::string`. If you prefer to have yet another string class in your code, it may be worth a look. Be aware of the licensing issues, though.
4. Platform dependent solutions: Windows and POSIX have functions to convert strings from one encoding to another. That is only a subset of what my library offers, but if that is all you need it may be good enough.
## Reference
### Functions From utf8 Namespace
#### utf8::append
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Encodes a 32 bit code point as a UTF-8 sequence of octets and appends the sequence to a UTF-8 string.
```cpp
void append(char32_t cp, std::string& s);
```
`cp`: a code point to append to the string.
`s`: a utf-8 encoded string to append the code point to.
Example of use:
```cpp
std::string u;
append(0x0448, u);
assert (u[0] == char(0xd1) && u[1] == char(0x88) && u.length() == 2);
```
In case of an invalid code point, a `utf8::invalid_code_point` exception is thrown.
#### utf8::append
Available in version 1.0 and later.
@ -328,6 +398,30 @@ This function is used to find the length (in code points) of a UTF-8 encoded str
In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown. If `last` does not point to the past-of-end of a UTF-8 seqence, a `utf8::not_enough_room` exception is thrown.
#### utf8::utf16to8
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Converts a UTF-16 encoded string to UTF-8.
```cpp
std::string utf16to8(const std::u16string& s);
```
`s`: a UTF-16 encoded string.
Return value: A UTF-8 encoded string.
Example of use:
```cpp
u16string utf16string = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e};
string u = utf16to8(utf16string);
assert (u.size() == 10);
```
In case of invalid UTF-16 sequence, a `utf8::invalid_utf16` exception is thrown.
#### utf8::utf16to8
Available in version 1.0 and later.
@ -359,6 +453,31 @@ In case of invalid UTF-16 sequence, a `utf8::invalid_utf16` exception is thrown.
#### utf8::utf8to16
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Converts an UTF-8 encoded string to UTF-16.
```cpp
std::u16string utf8to16(const std::string& s);
```
`s`: an UTF-8 encoded string to convert.
Return value: A UTF-16 encoded string
Example of use:
```cpp
string utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e";
u16string utf16result = utf8to16(utf8_with_surrogates);
assert (utf16result.length() == 4);
assert (utf16result[2] == 0xd834);
assert (utf16result[3] == 0xdd1e);
```
In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown.
#### utf8::utf8to16
Available in version 1.0 and later.
Converts an UTF-8 encoded string to UTF-16
@ -389,6 +508,29 @@ In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown.
#### utf8::utf32to8
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Converts a UTF-32 encoded string to UTF-8.
```cpp
std::string utf32to8(const std::u32string& s);
```
`s`: a UTF-32 encoded string.
Return value: a UTF-8 encoded string.
Example of use:
```cpp
u32string utf32string = {0x448, 0x65E5, 0x10346};
string utf8result = utf32to8(utf32string);
assert (utf8result.size() == 9);
```
In case of invalid UTF-32 string, a `utf8::invalid_code_point` exception is thrown.
#### utf8::utf32to8
Available in version 1.0 and later.
Converts a UTF-32 encoded string to UTF-8.
@ -407,7 +549,7 @@ Return value: An iterator pointing to the place after the appended UTF-8 string.
Example of use:
```
```cpp
int utf32string[] = {0x448, 0x65E5, 0x10346, 0};
vector<unsigned char> utf8result;
utf32to8(utf32string, utf32string + 3, back_inserter(utf8result));
@ -416,6 +558,30 @@ assert (utf8result.size() == 9);
In case of invalid UTF-32 string, a `utf8::invalid_code_point` exception is thrown.
#### utf8::utf8to32
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Converts a UTF-8 encoded string to UTF-32.
```cpp
std::u32string utf8to32(const std::string& s);
```
`s`: a UTF-8 encoded string.
Return value: a UTF-32 encoded string.
Example of use:
```cpp
const char* twochars = "\xe6\x97\xa5\xd1\x88";
u32string utf32result = utf8to32(twochars);
assert (utf32result.size() == 2);
```
In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown.
#### utf8::utf8to32
Available in version 1.0 and later.
@ -447,6 +613,29 @@ In case of an invalid UTF-8 seqence, a `utf8::invalid_utf8` exception is thrown.
#### utf8::find_invalid
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Detects an invalid sequence within a UTF-8 string.
```cpp
std::size_t find_invalid(const std::string& s);
```
`s`: a UTF-8 encoded string.
Return value: the index of the first invalid octet in the UTF-8 string. In case none were found, equals `std::string::npos`.
Example of use:
```cpp
string utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa";
auto invalid = find_invalid(utf_invalid);
assert (invalid == 5);
```
This function is typically used to make sure a UTF-8 string is valid before processing it with other functions. It is especially important to call it if before doing any of the _unchecked_ operations on it.
#### utf8::find_invalid
Available in version 1.0 and later.
Detects an invalid sequence within a UTF-8 string.
@ -473,6 +662,29 @@ This function is typically used to make sure a UTF-8 string is valid before proc
#### utf8::is_valid
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Checks whether a string object contains valid UTF-8 encoded text.
```cpp
bool is_valid(const std::string& s);
```
`s`: a UTF-8 encoded string.
Return value: `true` if the string contains valid UTF-8 encoded text; `false` if not.
Example of use:
```cpp
char utf_invalid[] = "\xe6\x97\xa5\xd1\x88\xfa";
bool bvalid = is_valid(utf_invalid);
assert (bvalid == false);
```
You may want to use `is_valid` to make sure that a string contains valid UTF-8 text without the need to know where it fails if it is not valid.
#### utf8::is_valid
Available in version 1.0 and later.
Checks whether a sequence of octets is a valid UTF-8 string.
@ -499,6 +711,32 @@ assert (bvalid == false);
#### utf8::replace_invalid
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Replaces all invalid UTF-8 sequences within a string with a replacement marker.
```cpp
std::string replace_invalid(const std::string& s, char32_t replacement);
std::string replace_invalid(const std::string& s);
```
`s`: a UTF-8 encoded string.
`replacement`: A Unicode code point for the replacement marker. The version without this parameter assumes the value `0xfffd`
Return value: A UTF-8 encoded string with replaced invalid sequences.
Example of use:
```cpp
string invalid_sequence = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z";
string replace_invalid_result = replace_invalid(invalid_sequence, '?');
bvalid = is_valid(replace_invalid_result);
assert (bvalid);
const string fixed_invalid_sequence = "a????z";
assert (fixed_invalid_sequence == replace_invalid_result);
```
#### utf8::replace_invalid
Available in version 2.0 and later.
Replaces all invalid UTF-8 sequences within a string with a replacement marker.
@ -536,7 +774,34 @@ If `end` does not point to the past-of-end of a UTF-8 sequence, a `utf8::not_eno
#### utf8::starts_with_bom
Available in version 2.3 and later. Relaces deprecated `is_bom()` function.
Available in version 3.0 and later. Requires a C++ 11 compliant compiler.
Checks whether a string starts with a UTF-8 byte order mark (BOM)
```cpp
bool starts_with_bom(const std::string& s);
```
`s`: a UTF-8 encoded string.
Return value: `true` if the string starts with a UTF-8 byte order mark; `false` if not.
Example of use:
```cpp
string byte_order_mark = {char(0xef), char(0xbb), char(0xbf)};
bool bbom = starts_with_bom(byte_order_mark);
assert (bbom == true);
string threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88";
bool no_bbom = starts_with_bom(threechars);
assert (no_bbom == false);
```
The typical use of this function is to check the first three bytes of a file. If they form the UTF-8 BOM, we want to skip them before processing the actual UTF-8 encoded text.
#### utf8::starts_with_bom
Available in version 2.3 and later. Replaces deprecated `is_bom()` function.
Checks whether an octet sequence starts with a UTF-8 byte order mark (BOM)
@ -678,15 +943,24 @@ class iterator;
##### Member functions
`iterator();` the deafult constructor; the underlying octet_iterator is constructed with its default constructor.
`iterator();` the deafult constructor; the underlying octet_iterator is constructed with its default constructor.
`explicit iterator (const octet_iterator& octet_it, const octet_iterator& range_start, const octet_iterator& range_end);` a constructor that initializes the underlying octet_iterator with octet_it and sets the range in which the iterator is considered valid.
`octet_iterator base () const;` returns the underlying octet_iterator.
`uint32_t operator * () const;` decodes the utf-8 sequence the underlying octet_iterator is pointing to and returns the code point.
`bool operator == (const iterator& rhs) const;` returns `true` if the two underlaying iterators are equal.
`bool operator != (const iterator& rhs) const;` returns `true` if the two underlaying iterators are not equal.
`iterator& operator ++ ();` the prefix increment - moves the iterator to the next UTF-8 encoded code point.
`iterator operator ++ (int);` the postfix increment - moves the iterator to the next UTF-8 encoded code point and returns the current one.
`iterator& operator -- ();` the prefix decrement - moves the iterator to the previous UTF-8 encoded code point.
`iterator operator -- (int);` the postfix decrement - moves the iterator to the previous UTF-8 encoded code point and returns the current one.
Example of use:
@ -1029,7 +1303,9 @@ class iterator;
##### Member functions
`iterator();` the deafult constructor; the underlying octet_iterator is constructed with its default constructor.
`explicit iterator (const octet_iterator& octet_it);` a constructor that initializes the underlying octet_iterator with `octet_it`
`explicit iterator (const octet_iterator& octet_it);` a constructor that initializes the underlying octet_iterator with `octet_it`.
`octet_iterator base () const;` returns the underlying octet_iterator.
`uint32_t operator * () const;` decodes the utf-8 sequence the underlying octet_iterator is pointing to and returns the code point.
`bool operator == (const iterator& rhs) const;` returns `true` if the two underlaying iterators are equal.
@ -1062,26 +1338,6 @@ assert (*un_it == 0x10346);
This is an unchecked version of `utf8::iterator`. It is faster in many cases, but offers no validity or range checks.
## Points of interest
#### Design goals and decisions
The library was designed to be:
1. Generic: for better or worse, there are many C++ string classes out there, and the library should work with as many of them as possible.
2. Portable: the library should be portable both accross different platforms and compilers. The only non-portable code is a small section that declares unsigned integers of different sizes: three typedefs. They can be changed by the users of the library if they don't match their platform. The default setting should work for Windows (both 32 and 64 bit), and most 32 bit and 64 bit Unix derivatives. At this point I don't plan to use any post C++03 features, so the library should work even with pretty old compilers.
3. Lightweight: follow the "pay only for what you use" guideline.
4. Unintrusive: avoid forcing any particular design or even programming style on the user. This is a library, not a framework.
#### Alternatives
In case you want to look into other means of working with UTF-8 strings from C++, here is the list of solutions I am aware of:
1. [ICU Library](http://icu.sourceforge.net/). It is very powerful, complete, feature-rich, mature, and widely used. Also big, intrusive, non-generic, and doesn't play well with the Standard Library. I definitelly recommend looking at ICU even if you don't plan to use it.
2. C++11 language and library features. Still far from complete, and not easy to use.
3. [Glib::ustring](http://www.gtkmm.org/gtkmm2/docs/tutorial/html/ch03s04.html). A class specifically made to work with UTF-8 strings, and also feel like `std::string`. If you prefer to have yet another string class in your code, it may be worth a look. Be aware of the licensing issues, though.
4. Platform dependent solutions: Windows and POSIX have functions to convert strings from one encoding to another. That is only a subset of what my library offers, but if that is all you need it may be good enough.
## Links
1. [The Unicode Consortium](http://www.unicode.org/).

16
samples/docsample.cpp

@ -17,8 +17,8 @@ int main(int argc, char** argv)
// Open the test file (must be UTF-8 encoded)
ifstream fs8(test_file_path);
if (!fs8.is_open()) {
cout << "Could not open " << test_file_path << endl;
return 0;
cout << "Could not open " << test_file_path << endl;
return 0;
}
unsigned line_count = 1;
@ -26,7 +26,11 @@ int main(int argc, char** argv)
// Play with all the lines in the file
while (getline(fs8, line)) {
// check for invalid utf-8 (for a simple yes/no check, there is also utf8::is_valid function)
#if __cplusplus >= 201103L // C++ 11 or later
auto end_it = utf8::find_invalid(line.begin(), line.end());
#else
string::iterator end_it = utf8::find_invalid(line.begin(), line.end());
#endif // C++ 11
if (end_it != line.end()) {
cout << "Invalid UTF-8 encoding detected at line " << line_count << "\n";
cout << "This part is fine: " << string(line.begin(), end_it) << "\n";
@ -36,11 +40,19 @@ int main(int argc, char** argv)
cout << "Length of line " << line_count << " is " << length << "\n";
// Convert it to utf-16
#if __cplusplus >= 201103L // C++ 11 or later
u16string utf16line = utf8::utf8to16(line);
#else
vector<unsigned short> utf16line;
utf8::utf8to16(line.begin(), end_it, back_inserter(utf16line));
#endif // C++ 11
// And back to utf-8;
#if __cplusplus >= 201103L // C++ 11 or later
string utf8line = utf8::utf16to8(utf16line);
#else
string utf8line;
utf8::utf16to8(utf16line.begin(), utf16line.end(), back_inserter(utf8line));
#endif // C++ 11
// Confirm that the conversion went OK:
if (utf8line != string(line.begin(), end_it))
cout << "Error in UTF-16 conversion at line: " << line_count << "\n";

4
source/utf8.h

@ -31,4 +31,8 @@ DEALINGS IN THE SOFTWARE.
#include "utf8/checked.h"
#include "utf8/unchecked.h"
#if __cplusplus >= 201103L // C++ 11 or later
#include "utf8/cpp11.h"
#endif // C++ 11 or later
#endif // header guard

103
source/utf8/cpp11.h

@ -0,0 +1,103 @@
// Copyright 2018 Nemanja Trifunovic
/*
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
*/
#ifndef UTF8_FOR_CPP_a184c22c_d012_11e8_a8d5_f2801f1b9fd1
#define UTF8_FOR_CPP_a184c22_cd012_11e8_a8d5_f2801f1b9fd1
#include "checked.h"
#include <string>
#include <cassert>
namespace utf8
{
void append(char32_t cp, std::string& s)
{
append(uint32_t(cp), std::back_inserter(s));
}
std::string utf16to8(const std::u16string& s)
{
std::string result;
utf16to8(s.begin(), s.end(), std::back_inserter(result));
return result;
}
std::u16string utf8to16(const std::string& s)
{
std::u16string result;
utf8to16(s.begin(), s.end(), std::back_inserter(result));
return result;
}
std::string utf32to8(const std::u32string& s)
{
std::string result;
utf32to8(s.begin(), s.end(), std::back_inserter(result));
return result;
}
std::u32string utf8to32(const std::string& s)
{
std::u32string result;
utf8to32(s.begin(), s.end(), std::back_inserter(result));
return result;
}
std::size_t find_invalid(const std::string& s)
{
std::string::const_iterator invalid = find_invalid(s.begin(), s.end());
return (invalid == s.end()) ? std::string::npos : (invalid - s.begin());
}
bool is_valid(const std::string& s)
{
return is_valid(s.begin(), s.end());
}
std::string replace_invalid(const std::string& s, char32_t replacement)
{
std::string result;
replace_invalid(s.begin(), s.end(), std::back_inserter(result), replacement);
return result;
}
std::string replace_invalid(const std::string& s)
{
std::string result;
replace_invalid(s.begin(), s.end(), std::back_inserter(result));
return result;
}
bool starts_with_bom(const std::string& s)
{
return starts_with_bom(s.begin(), s.end());
}
} // namespace utf8
#endif // header guard

78
test_drivers/smoke_test/cpp11.cpp

@ -0,0 +1,78 @@
#include "../../source/utf8.h"
using namespace utf8;
using namespace std;
int main()
{
string u;
#if __cplusplus >= 201103L // C++ 11 or later
//append
append(0x0448, u);
assert (u[0] == char(0xd1) && u[1] == char(0x88) && u.length() == 2);
u.clear();
append(0x65e5, u);
assert (u[0] == char(0xe6) && u[1] == char(0x97) && u[2] == char(0xa5) && u.length() == 3);
u.clear();
append(0x3044, u);
assert (u[0] == char(0xe3) && u[1] == char(0x81) && u[2] == char(0x84) && u.length() == 3);
u.clear();
append(0x10346, u);
assert (u[0] == char(0xf0) && u[1] == char(0x90) && u[2] == char(0x8d) && u[3] == char(0x86) && u.length() == 4);
//utf16to8
u16string utf16string = {0x41, 0x0448, 0x65e5, 0xd834, 0xdd1e};
u.clear();
u = utf16to8(utf16string);
assert (u.size() == 10);
//utf8to16
string utf8_with_surrogates = "\xe6\x97\xa5\xd1\x88\xf0\x9d\x84\x9e";
u16string utf16result = utf8to16(utf8_with_surrogates);
assert (utf16result.length() == 4);
assert (utf16result[2] == 0xd834);
assert (utf16result[3] == 0xdd1e);
// utf32to8
u32string utf32string = {0x448, 0x65E5, 0x10346};
string utf8result = utf32to8(utf32string);
assert (utf8result.size() == 9);
// utf8to32
const char* twochars = "\xe6\x97\xa5\xd1\x88";
u32string utf32result = utf8to32(twochars);
assert (utf32result.size() == 2);
//find_invalid
string utf_invalid = "\xe6\x97\xa5\xd1\x88\xfa";
auto invalid = find_invalid(utf_invalid);
assert (invalid == 5);
//is_valid
bool bvalid = is_valid(utf_invalid);
assert (bvalid == false);
bvalid = is_valid(utf8_with_surrogates);
assert (bvalid == true);
//replace_invalid
string invalid_sequence = "a\x80\xe0\xa0\xc0\xaf\xed\xa0\x80z";
string replace_invalid_result = replace_invalid(invalid_sequence, '?');
bvalid = is_valid(replace_invalid_result);
assert (bvalid);
const string fixed_invalid_sequence = "a????z";
assert (fixed_invalid_sequence == replace_invalid_result);
//starts_with_bom
string byte_order_mark = {char(0xef), char(0xbb), char(0xbf)};
bool bbom = starts_with_bom(byte_order_mark);
assert (bbom == true);
string threechars = "\xf0\x90\x8d\x86\xe6\x97\xa5\xd1\x88";
bool no_bbom = starts_with_bom(threechars);
assert (no_bbom == false);
#endif // C++ 11 or later
}
Loading…
Cancel
Save