Hush fork of xmrig
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

214 lines
7.8 KiB

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <x86intrin.h>
#include <string.h>
#include "cryptonight.h"
#include "crypto/c_keccak.h"
static inline void ExpandAESKey256_sub1(__m128i *tmp1, __m128i *tmp2)
{
__m128i tmp4;
*tmp2 = _mm_shuffle_epi32(*tmp2, 0xFF);
tmp4 = _mm_slli_si128(*tmp1, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp1 = _mm_xor_si128(*tmp1, tmp4);
*tmp1 = _mm_xor_si128(*tmp1, *tmp2);
}
static inline void ExpandAESKey256_sub2(__m128i *tmp1, __m128i *tmp3)
{
__m128i tmp2, tmp4;
tmp4 = _mm_aeskeygenassist_si128(*tmp1, 0x00);
tmp2 = _mm_shuffle_epi32(tmp4, 0xAA);
tmp4 = _mm_slli_si128(*tmp3, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
*tmp3 = _mm_xor_si128(*tmp3, tmp4);
*tmp3 = _mm_xor_si128(*tmp3, tmp2);
}
// Special thanks to Intel for helping me
// with ExpandAESKey256() and its subroutines
static inline void ExpandAESKey256(char *keybuf)
{
__m128i tmp1, tmp2, tmp3, *keys;
keys = (__m128i *)keybuf;
tmp1 = _mm_load_si128((__m128i *)keybuf);
tmp3 = _mm_load_si128((__m128i *)(keybuf+0x10));
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x01);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[2] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[3] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x02);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[4] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[5] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x04);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[6] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[7] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x08);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[8] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[9] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x10);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[10] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[11] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x20);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[12] = tmp1;
ExpandAESKey256_sub2(&tmp1, &tmp3);
keys[13] = tmp3;
tmp2 = _mm_aeskeygenassist_si128(tmp3, 0x40);
ExpandAESKey256_sub1(&tmp1, &tmp2);
keys[14] = tmp1;
}
void cryptonight_av3_aesni_bmi2(void *restrict output, const void *restrict input, const char *restrict memory, struct cryptonight_ctx *restrict ctx)
{
keccak((const uint8_t *) input, 76, (uint8_t *) &ctx->state.hs, 200);
uint8_t ExpandedKey[256];
size_t i, j;
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, ctx->state.hs.b, AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
__m128i *longoutput, *expkey, *xmminput;
longoutput = (__m128i *) memory;
expkey = (__m128i *)ExpandedKey;
xmminput = (__m128i *)ctx->text;
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE)
{
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
_mm_store_si128(&(longoutput[(i >> 4)]), xmminput[0]);
_mm_store_si128(&(longoutput[(i >> 4) + 1]), xmminput[1]);
_mm_store_si128(&(longoutput[(i >> 4) + 2]), xmminput[2]);
_mm_store_si128(&(longoutput[(i >> 4) + 3]), xmminput[3]);
_mm_store_si128(&(longoutput[(i >> 4) + 4]), xmminput[4]);
_mm_store_si128(&(longoutput[(i >> 4) + 5]), xmminput[5]);
_mm_store_si128(&(longoutput[(i >> 4) + 6]), xmminput[6]);
_mm_store_si128(&(longoutput[(i >> 4) + 7]), xmminput[7]);
}
for (i = 0; i < 2; i++)
{
ctx->a[i] = ((uint64_t *)ctx->state.k)[i] ^ ((uint64_t *)ctx->state.k)[i+4];
ctx->b[i] = ((uint64_t *)ctx->state.k)[i+2] ^ ((uint64_t *)ctx->state.k)[i+6];
}
__m128i a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
__m128i b_x = _mm_load_si128((__m128i *) ctx->b);
uint64_t c[2] __attribute((aligned(16)));
uint64_t d[2] __attribute((aligned(16)));
uint64_t hi;
for (i = 0; __builtin_expect(i < 0x80000, 1); i++) {
__m128i c_x = _mm_aesenc_si128(a_x, _mm_load_si128((__m128i *) ctx->a));
_mm_store_si128((__m128i *) c, c_x);
uint64_t *restrict d_ptr = (uint64_t *) &memory[c[0] & 0x1FFFF0];
_mm_store_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0], _mm_xor_si128(b_x, c_x));
b_x = c_x;
d[0] = d_ptr[0];
d[1] = d_ptr[1];
d_ptr[1] = ctx->a[1] += _mulx_u64(c[0], d[0], &hi);
d_ptr[0] = ctx->a[0] += hi;
ctx->a[0] ^= d[0];
ctx->a[1] ^= d[1];
a_x = _mm_load_si128((__m128i *) &memory[ctx->a[0] & 0x1FFFF0]);
}
memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE);
memcpy(ExpandedKey, &ctx->state.hs.b[32], AES_KEY_SIZE);
ExpandAESKey256(ExpandedKey);
for (i = 0; __builtin_expect(i < MEMORY, 1); i += INIT_SIZE_BYTE) {
xmminput[0] = _mm_xor_si128(longoutput[(i >> 4)], xmminput[0]);
xmminput[1] = _mm_xor_si128(longoutput[(i >> 4) + 1], xmminput[1]);
xmminput[2] = _mm_xor_si128(longoutput[(i >> 4) + 2], xmminput[2]);
xmminput[3] = _mm_xor_si128(longoutput[(i >> 4) + 3], xmminput[3]);
xmminput[4] = _mm_xor_si128(longoutput[(i >> 4) + 4], xmminput[4]);
xmminput[5] = _mm_xor_si128(longoutput[(i >> 4) + 5], xmminput[5]);
xmminput[6] = _mm_xor_si128(longoutput[(i >> 4) + 6], xmminput[6]);
xmminput[7] = _mm_xor_si128(longoutput[(i >> 4) + 7], xmminput[7]);
for(j = 0; j < 10; j++)
{
xmminput[0] = _mm_aesenc_si128(xmminput[0], expkey[j]);
xmminput[1] = _mm_aesenc_si128(xmminput[1], expkey[j]);
xmminput[2] = _mm_aesenc_si128(xmminput[2], expkey[j]);
xmminput[3] = _mm_aesenc_si128(xmminput[3], expkey[j]);
xmminput[4] = _mm_aesenc_si128(xmminput[4], expkey[j]);
xmminput[5] = _mm_aesenc_si128(xmminput[5], expkey[j]);
xmminput[6] = _mm_aesenc_si128(xmminput[6], expkey[j]);
xmminput[7] = _mm_aesenc_si128(xmminput[7], expkey[j]);
}
}
memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE);
keccakf((uint64_t *) &ctx->state.hs, 24);
extra_hashes[ctx->state.hs.b[0] & 3](&ctx->state, 200, output);
}