Hush fork of xmrig
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1271 lines
39 KiB

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* For Mesa clover support */
#ifdef cl_clang_storage_class_specifiers
# pragma OPENCL EXTENSION cl_clang_storage_class_specifiers : enable
#endif
#include "algorithm.cl"
#include "wolf-aes.cl"
#include "wolf-skein.cl"
#include "jh.cl"
#include "blake256.cl"
#include "groestl256.cl"
#include "fast_int_math_v2.cl"
#include "fast_div_heavy.cl"
#if defined(__NV_CL_C_VERSION) && STRIDED_INDEX != 0
# undef STRIDED_INDEX
# define STRIDED_INDEX 0
#endif
static const __constant ulong keccakf_rndc[24] =
{
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
static const __constant uchar sbox[256] =
{
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};
static const __constant uint keccakf_rotc[24] =
{
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
static const __constant uint keccakf_piln[24] =
{
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
void keccakf1600_1(ulong *st)
{
int i, round;
ulong t, bc[5];
#pragma unroll 1
for (round = 0; round < 24; ++round) {
// Theta
bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
#pragma unroll 1
for (i = 0; i < 5; ++i) {
t = bc[(i + 4) % 5] ^ rotate(bc[(i + 1) % 5], 1UL);
st[i ] ^= t;
st[i + 5] ^= t;
st[i + 10] ^= t;
st[i + 15] ^= t;
st[i + 20] ^= t;
}
// Rho Pi
t = st[1];
#pragma unroll 1
for (i = 0; i < 24; ++i) {
bc[0] = st[keccakf_piln[i]];
st[keccakf_piln[i]] = rotate(t, (ulong)keccakf_rotc[i]);
t = bc[0];
}
#pragma unroll 1
for (int i = 0; i < 25; i += 5) {
ulong tmp[5];
#pragma unroll 1
for (int x = 0; x < 5; ++x) {
tmp[x] = bitselect(st[i + x] ^ st[i + ((x + 2) % 5)], st[i + x], st[i + ((x + 1) % 5)]);
}
#pragma unroll 1
for (int x = 0; x < 5; ++x) {
st[i + x] = tmp[x];
}
}
// Iota
st[0] ^= keccakf_rndc[round];
}
}
void keccakf1600_2(__local ulong *st)
{
int i, round;
ulong t, bc[5];
#pragma unroll 1
for (round = 0; round < 24; ++round) {
bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20] ^ rotate(st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22], 1UL);
bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21] ^ rotate(st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23], 1UL);
bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22] ^ rotate(st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24], 1UL);
bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23] ^ rotate(st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20], 1UL);
bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24] ^ rotate(st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21], 1UL);
st[0] ^= bc[4];
st[5] ^= bc[4];
st[10] ^= bc[4];
st[15] ^= bc[4];
st[20] ^= bc[4];
st[1] ^= bc[0];
st[6] ^= bc[0];
st[11] ^= bc[0];
st[16] ^= bc[0];
st[21] ^= bc[0];
st[2] ^= bc[1];
st[7] ^= bc[1];
st[12] ^= bc[1];
st[17] ^= bc[1];
st[22] ^= bc[1];
st[3] ^= bc[2];
st[8] ^= bc[2];
st[13] ^= bc[2];
st[18] ^= bc[2];
st[23] ^= bc[2];
st[4] ^= bc[3];
st[9] ^= bc[3];
st[14] ^= bc[3];
st[19] ^= bc[3];
st[24] ^= bc[3];
// Rho Pi
t = st[1];
#pragma unroll 1
for (i = 0; i < 24; ++i) {
bc[0] = st[keccakf_piln[i]];
st[keccakf_piln[i]] = rotate(t, (ulong)keccakf_rotc[i]);
t = bc[0];
}
#pragma unroll 1
for (int i = 0; i < 25; i += 5) {
ulong tmp1 = st[i], tmp2 = st[i + 1];
st[i] = bitselect(st[i] ^ st[i + 2], st[i], st[i + 1]);
st[i + 1] = bitselect(st[i + 1] ^ st[i + 3], st[i + 1], st[i + 2]);
st[i + 2] = bitselect(st[i + 2] ^ st[i + 4], st[i + 2], st[i + 3]);
st[i + 3] = bitselect(st[i + 3] ^ tmp1, st[i + 3], st[i + 4]);
st[i + 4] = bitselect(st[i + 4] ^ tmp2, st[i + 4], tmp1);
}
// Iota
st[0] ^= keccakf_rndc[round];
}
}
static const __constant uchar rcon[8] = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40 };
#define SubWord(inw) ((sbox[BYTE(inw, 3)] << 24) | (sbox[BYTE(inw, 2)] << 16) | (sbox[BYTE(inw, 1)] << 8) | sbox[BYTE(inw, 0)])
void AESExpandKey256(uint *keybuf)
{
//#pragma unroll 4
for (uint c = 8, i = 1; c < 40; ++c) {
// For 256-bit keys, an sbox permutation is done every other 4th uint generated, AND every 8th
uint t = ((!(c & 7)) || ((c & 7) == 4)) ? SubWord(keybuf[c - 1]) : keybuf[c - 1];
// If the uint we're generating has an index that is a multiple of 8, rotate and XOR with the round constant,
// then XOR this with previously generated uint. If it's 4 after a multiple of 8, only the sbox permutation
// is done, followed by the XOR. If neither are true, only the XOR with the previously generated uint is done.
keybuf[c] = keybuf[c - 8] ^ ((!(c & 7)) ? rotate(t, 24U) ^ as_uint((uchar4)(rcon[i++], 0U, 0U, 0U)) : t);
}
}
#define MEM_CHUNK (1 << MEM_CHUNK_EXPONENT)
#if (STRIDED_INDEX == 0)
# define IDX(x) (x)
#elif (STRIDED_INDEX == 1)
# if (ALGO == CRYPTONIGHT_HEAVY)
# define IDX(x) ((x) * WORKSIZE)
# else
# define IDX(x) mul24((x), Threads)
# endif
#elif (STRIDED_INDEX == 2)
# define IDX(x) (((x) % MEM_CHUNK) + ((x) / MEM_CHUNK) * WORKSIZE * MEM_CHUNK)
#endif
inline ulong getIdx()
{
# if (STRIDED_INDEX == 0 || STRIDED_INDEX == 1 || STRIDED_INDEX == 2)
return get_global_id(0) - get_global_offset(0);
# endif
}
//#include "opencl/cryptonight_gpu.cl"
//XMRIG_INCLUDE_CN_GPU
#define mix_and_propagate(xin) (xin)[(get_local_id(1)) % 8][get_local_id(0)] ^ (xin)[(get_local_id(1) + 1) % 8][get_local_id(0)]
__attribute__((reqd_work_group_size(8, 8, 1)))
__kernel void cn0(__global ulong *input, __global uint4 *Scratchpad, __global ulong *states, uint Threads)
{
uint ExpandedKey1[40];
__local uint AES0[256], AES1[256], AES2[256], AES3[256];
uint4 text;
const uint gIdx = getIdx();
for (int i = get_local_id(1) * 8 + get_local_id(0); i < 256; i += 8 * 8) {
const uint tmp = AES0_C[i];
AES0[i] = tmp;
AES1[i] = rotate(tmp, 8U);
AES2[i] = rotate(tmp, 16U);
AES3[i] = rotate(tmp, 24U);
}
barrier(CLK_LOCAL_MEM_FENCE);
__local ulong State_buf[8 * 25];
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
states += 25 * gIdx;
# if (STRIDED_INDEX == 0)
Scratchpad += gIdx * (MEMORY >> 4);
# elif (STRIDED_INDEX == 1)
# if (ALGO == CRYPTONIGHT_HEAVY)
Scratchpad += (gIdx / WORKSIZE) * (MEMORY >> 4) * WORKSIZE + (gIdx % WORKSIZE);
# else
Scratchpad += gIdx;
# endif
# elif (STRIDED_INDEX == 2)
Scratchpad += (gIdx / WORKSIZE) * (MEMORY >> 4) * WORKSIZE + MEM_CHUNK * (gIdx % WORKSIZE);
# endif
if (get_local_id(1) == 0) {
__local ulong* State = State_buf + get_local_id(0) * 25;
((__local ulong8 *)State)[0] = vload8(0, input);
State[8] = input[8];
State[9] = input[9];
State[10] = input[10];
State[11] = input[11];
State[12] = input[12];
State[13] = input[13];
State[14] = input[14];
State[15] = input[15];
((__local uint *)State)[9] &= 0x00FFFFFFU;
((__local uint *)State)[9] |= (((uint)get_global_id(0)) & 0xFF) << 24;
((__local uint *)State)[10] &= 0xFF000000U;
/* explicit cast to `uint` is required because some OpenCL implementations (e.g. NVIDIA)
* handle get_global_id and get_global_offset as signed long long int and add
* 0xFFFFFFFF... to `get_global_id` if we set on host side a 32bit offset where the first bit is `1`
* (even if it is correct casted to unsigned on the host)
*/
((__local uint *)State)[10] |= (((uint)get_global_id(0) >> 8));
// Last bit of padding
State[16] = 0x8000000000000000UL;
for (int i = 17; i < 25; ++i) {
State[i] = 0x00UL;
}
keccakf1600_2(State);
#pragma unroll 1
for (int i = 0; i < 25; ++i) {
states[i] = State[i];
}
}
}
barrier(CLK_GLOBAL_MEM_FENCE);
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
text = vload4(get_local_id(1) + 4, (__global uint *)(states));
#pragma unroll
for (int i = 0; i < 4; ++i) {
((ulong *)ExpandedKey1)[i] = states[i];
}
AESExpandKey256(ExpandedKey1);
}
mem_fence(CLK_LOCAL_MEM_FENCE);
# if (ALGO == CRYPTONIGHT_HEAVY)
{
__local uint4 xin[8][8];
/* Also left over threads perform this loop.
* The left over thread results will be ignored
*/
#pragma unroll 16
for (size_t i = 0; i < 16; i++) {
#pragma unroll 10
for (int j = 0; j < 10; ++j) {
uint4 t = ((uint4 *)ExpandedKey1)[j];
t.s0 ^= AES0[BYTE(text.s0, 0)] ^ AES1[BYTE(text.s1, 1)] ^ AES2[BYTE(text.s2, 2)] ^ AES3[BYTE(text.s3, 3)];
t.s1 ^= AES0[BYTE(text.s1, 0)] ^ AES1[BYTE(text.s2, 1)] ^ AES2[BYTE(text.s3, 2)] ^ AES3[BYTE(text.s0, 3)];
t.s2 ^= AES0[BYTE(text.s2, 0)] ^ AES1[BYTE(text.s3, 1)] ^ AES2[BYTE(text.s0, 2)] ^ AES3[BYTE(text.s1, 3)];
t.s3 ^= AES0[BYTE(text.s3, 0)] ^ AES1[BYTE(text.s0, 1)] ^ AES2[BYTE(text.s1, 2)] ^ AES3[BYTE(text.s2, 3)];
text = t;
}
barrier(CLK_LOCAL_MEM_FENCE);
xin[get_local_id(1)][get_local_id(0)] = text;
barrier(CLK_LOCAL_MEM_FENCE);
text = mix_and_propagate(xin);
}
}
# endif
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
const uint local_id1 = get_local_id(1);
#pragma unroll 2
for(uint i = 0; i < (MEMORY >> 4); i += 8) {
#pragma unroll 10
for (uint j = 0; j < 10; ++j) {
uint4 t = ((uint4 *)ExpandedKey1)[j];
t.s0 ^= AES0[BYTE(text.s0, 0)] ^ AES1[BYTE(text.s1, 1)] ^ AES2[BYTE(text.s2, 2)] ^ AES3[BYTE(text.s3, 3)];
t.s1 ^= AES0[BYTE(text.s1, 0)] ^ AES1[BYTE(text.s2, 1)] ^ AES2[BYTE(text.s3, 2)] ^ AES3[BYTE(text.s0, 3)];
t.s2 ^= AES0[BYTE(text.s2, 0)] ^ AES1[BYTE(text.s3, 1)] ^ AES2[BYTE(text.s0, 2)] ^ AES3[BYTE(text.s1, 3)];
t.s3 ^= AES0[BYTE(text.s3, 0)] ^ AES1[BYTE(text.s0, 1)] ^ AES2[BYTE(text.s1, 2)] ^ AES3[BYTE(text.s2, 3)];
text = t;
}
Scratchpad[IDX(i + local_id1)] = text;
}
}
mem_fence(CLK_GLOBAL_MEM_FENCE);
}
#define VARIANT1_1(p) \
uint table = 0x75310U; \
uint index = (((p).s2 >> 26) & 12) | (((p).s2 >> 23) & 2); \
(p).s2 ^= ((table >> index) & 0x30U) << 24
#define VARIANT1_2(p) ((uint2 *)&(p))[0] ^= tweak1_2_0
#define VARIANT1_INIT() \
tweak1_2 = as_uint2(input[4]); \
tweak1_2.s0 >>= 24; \
tweak1_2.s0 |= tweak1_2.s1 << 8; \
tweak1_2.s1 = (uint) get_global_id(0); \
tweak1_2 ^= as_uint2(states[24])
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void cn1_v1(__global uint4 *Scratchpad, __global ulong *states, uint variant, __global ulong *input, uint Threads)
{
ulong a[2], b[2];
__local uint AES0[256], AES1[256];
const ulong gIdx = getIdx();
for (int i = get_local_id(0); i < 256; i += WORKSIZE) {
const uint tmp = AES0_C[i];
AES0[i] = tmp;
AES1[i] = rotate(tmp, 8U);
}
barrier(CLK_LOCAL_MEM_FENCE);
uint2 tweak1_2;
uint4 b_x;
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
states += 25 * gIdx;
# if (STRIDED_INDEX == 0)
Scratchpad += gIdx * (MEMORY >> 4);
# elif (STRIDED_INDEX == 1)
# if (ALGO == CRYPTONIGHT_HEAVY)
Scratchpad += (gIdx / WORKSIZE) * (MEMORY >> 4) * WORKSIZE + (gIdx % WORKSIZE);
# else
Scratchpad += gIdx;
# endif
# elif (STRIDED_INDEX == 2)
Scratchpad += get_group_id(0) * (MEMORY >> 4) * WORKSIZE + MEM_CHUNK * get_local_id(0);
# endif
a[0] = states[0] ^ states[4];
b[0] = states[2] ^ states[6];
a[1] = states[1] ^ states[5];
b[1] = states[3] ^ states[7];
b_x = ((uint4 *)b)[0];
VARIANT1_INIT();
}
mem_fence(CLK_LOCAL_MEM_FENCE);
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
#pragma unroll CN_UNROLL
for (int i = 0; i < ITERATIONS; ++i) {
ulong c[2];
((uint4 *)c)[0] = Scratchpad[IDX((as_uint2(a[0]).s0 & MASK) >> 4)];
((uint4 *)c)[0] = AES_Round_Two_Tables(AES0, AES1, ((uint4 *)c)[0], ((uint4 *)a)[0]);
b_x ^= ((uint4 *)c)[0];
VARIANT1_1(b_x);
Scratchpad[IDX((as_uint2(a[0]).s0 & MASK) >> 4)] = b_x;
uint4 tmp;
tmp = Scratchpad[IDX((as_uint2(c[0]).s0 & MASK) >> 4)];
a[1] += c[0] * as_ulong2(tmp).s0;
a[0] += mul_hi(c[0], as_ulong2(tmp).s0);
uint2 tweak1_2_0 = tweak1_2;
# if ALGO == ALGO_CN_RTO
tweak1_2_0 ^= ((uint2 *)&(a[0]))[0];
# endif
VARIANT1_2(a[1]);
Scratchpad[IDX((as_uint2(c[0]).s0 & MASK) >> 4)] = ((uint4 *)a)[0];
VARIANT1_2(a[1]);
((uint4 *)a)[0] ^= tmp;
b_x = ((uint4 *)c)[0];
}
}
mem_fence(CLK_GLOBAL_MEM_FENCE);
}
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void cn1_v2(__global uint4 *Scratchpad, __global ulong *states, uint variant, __global ulong *input, uint Threads)
{
# if (ALGO == CRYPTONIGHT || ALGO == CRYPTONIGHT_PICO)
ulong a[2], b[4];
__local uint AES0[256], AES1[256], AES2[256], AES3[256];
const ulong gIdx = getIdx();
for(int i = get_local_id(0); i < 256; i += WORKSIZE)
{
const uint tmp = AES0_C[i];
AES0[i] = tmp;
AES1[i] = rotate(tmp, 8U);
AES2[i] = rotate(tmp, 16U);
AES3[i] = rotate(tmp, 24U);
}
barrier(CLK_LOCAL_MEM_FENCE);
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
states += 25 * gIdx;
# if defined(__NV_CL_C_VERSION)
Scratchpad += gIdx * (ITERATIONS >> 2);
# else
# if (STRIDED_INDEX == 0)
Scratchpad += gIdx * (MEMORY >> 4);
# elif (STRIDED_INDEX == 1)
Scratchpad += gIdx;
# elif (STRIDED_INDEX == 2)
Scratchpad += get_group_id(0) * (MEMORY >> 4) * WORKSIZE + MEM_CHUNK * get_local_id(0);
# endif
# endif
a[0] = states[0] ^ states[4];
a[1] = states[1] ^ states[5];
b[0] = states[2] ^ states[6];
b[1] = states[3] ^ states[7];
b[2] = states[8] ^ states[10];
b[3] = states[9] ^ states[11];
}
ulong2 bx0 = ((ulong2 *)b)[0];
ulong2 bx1 = ((ulong2 *)b)[1];
mem_fence(CLK_LOCAL_MEM_FENCE);
# ifdef __NV_CL_C_VERSION
__local uint16 scratchpad_line_buf[WORKSIZE];
__local uint16* scratchpad_line = scratchpad_line_buf + get_local_id(0);
# define SCRATCHPAD_CHUNK(N) (*(__local uint4*)((__local uchar*)(scratchpad_line) + (idx1 ^ (N << 4))))
# else
# if (STRIDED_INDEX == 0)
# define SCRATCHPAD_CHUNK(N) (*(__global uint4*)((__global uchar*)(Scratchpad) + (idx ^ (N << 4))))
# elif (STRIDED_INDEX == 1)
# define SCRATCHPAD_CHUNK(N) (*(__global uint4*)((__global uchar*)(Scratchpad) + mul24(as_uint(idx ^ (N << 4)), Threads)))
# elif (STRIDED_INDEX == 2)
# define SCRATCHPAD_CHUNK(N) (*(__global uint4*)((__global uchar*)(Scratchpad) + (((idx ^ (N << 4)) % (MEM_CHUNK << 4)) + ((idx ^ (N << 4)) / (MEM_CHUNK << 4)) * WORKSIZE * (MEM_CHUNK << 4))))
# endif
# endif
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
uint2 division_result = as_uint2(states[12]);
uint sqrt_result = as_uint2(states[13]).s0;
#pragma unroll CN_UNROLL
for(int i = 0; i < ITERATIONS; ++i)
{
# ifdef __NV_CL_C_VERSION
uint idx = a[0] & 0x1FFFC0;
uint idx1 = a[0] & 0x30;
*scratchpad_line = *(__global uint16*)((__global uchar*)(Scratchpad) + idx);
# else
uint idx = a[0] & MASK;
# endif
uint4 c = SCRATCHPAD_CHUNK(0);
c = AES_Round(AES0, AES1, AES2, AES3, c, ((uint4 *)a)[0]);
{
const ulong2 chunk1 = as_ulong2(SCRATCHPAD_CHUNK(1));
const ulong2 chunk2 = as_ulong2(SCRATCHPAD_CHUNK(2));
const ulong2 chunk3 = as_ulong2(SCRATCHPAD_CHUNK(3));
SCRATCHPAD_CHUNK(1) = as_uint4(chunk3 + bx1);
SCRATCHPAD_CHUNK(2) = as_uint4(chunk1 + bx0);
SCRATCHPAD_CHUNK(3) = as_uint4(chunk2 + ((ulong2 *)a)[0]);
}
SCRATCHPAD_CHUNK(0) = as_uint4(bx0) ^ c;
# ifdef __NV_CL_C_VERSION
*(__global uint16*)((__global uchar*)(Scratchpad) + idx) = *scratchpad_line;
idx = as_ulong2(c).s0 & 0x1FFFC0;
idx1 = as_ulong2(c).s0 & 0x30;
*scratchpad_line = *(__global uint16*)((__global uchar*)(Scratchpad) + idx);
# else
idx = as_ulong2(c).s0 & MASK;
# endif
uint4 tmp = SCRATCHPAD_CHUNK(0);
{
tmp.s0 ^= division_result.s0;
tmp.s1 ^= division_result.s1 ^ sqrt_result;
division_result = fast_div_v2(as_ulong2(c).s1, (c.s0 + (sqrt_result << 1)) | 0x80000001UL);
sqrt_result = fast_sqrt_v2(as_ulong2(c).s0 + as_ulong(division_result));
}
ulong2 t;
t.s0 = mul_hi(as_ulong2(c).s0, as_ulong2(tmp).s0);
t.s1 = as_ulong2(c).s0 * as_ulong2(tmp).s0;
{
const ulong2 chunk1 = as_ulong2(SCRATCHPAD_CHUNK(1)) ^ t;
const ulong2 chunk2 = as_ulong2(SCRATCHPAD_CHUNK(2));
t ^= chunk2;
const ulong2 chunk3 = as_ulong2(SCRATCHPAD_CHUNK(3));
SCRATCHPAD_CHUNK(1) = as_uint4(chunk3 + bx1);
SCRATCHPAD_CHUNK(2) = as_uint4(chunk1 + bx0);
SCRATCHPAD_CHUNK(3) = as_uint4(chunk2 + ((ulong2 *)a)[0]);
}
a[1] += t.s1;
a[0] += t.s0;
SCRATCHPAD_CHUNK(0) = ((uint4 *)a)[0];
# ifdef __NV_CL_C_VERSION
*(__global uint16*)((__global uchar*)(Scratchpad) + idx) = *scratchpad_line;
# endif
((uint4 *)a)[0] ^= tmp;
bx1 = bx0;
bx0 = as_ulong2(c);
}
# undef SCRATCHPAD_CHUNK
}
mem_fence(CLK_GLOBAL_MEM_FENCE);
# endif
}
__attribute__((reqd_work_group_size(WORKSIZE, 1, 1)))
__kernel void cn1(__global uint4 *Scratchpad, __global ulong *states, uint variant, __global ulong *input, uint Threads)
{
ulong a[2], b[2];
__local uint AES0[256], AES1[256];
const ulong gIdx = getIdx();
for (int i = get_local_id(0); i < 256; i += WORKSIZE) {
const uint tmp = AES0_C[i];
AES0[i] = tmp;
AES1[i] = rotate(tmp, 8U);
}
barrier(CLK_LOCAL_MEM_FENCE);
uint4 b_x;
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
states += 25 * gIdx;
# if (STRIDED_INDEX == 0)
Scratchpad += gIdx * (MEMORY >> 4);
# elif (STRIDED_INDEX == 1)
# if (ALGO == CRYPTONIGHT_HEAVY)
Scratchpad += get_group_id(0) * (MEMORY >> 4) * WORKSIZE + get_local_id(0);
# else
Scratchpad += gIdx;
# endif
# elif(STRIDED_INDEX == 2)
Scratchpad += get_group_id(0) * (MEMORY >> 4) * WORKSIZE + MEM_CHUNK * get_local_id(0);
# endif
a[0] = states[0] ^ states[4];
b[0] = states[2] ^ states[6];
a[1] = states[1] ^ states[5];
b[1] = states[3] ^ states[7];
b_x = ((uint4 *)b)[0];
}
mem_fence(CLK_LOCAL_MEM_FENCE);
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
uint idx0 = a[0];
#pragma unroll CN_UNROLL
for (int i = 0; i < ITERATIONS; ++i) {
ulong c[2];
((uint4 *)c)[0] = Scratchpad[IDX((idx0 & MASK) >> 4)];
((uint4 *)c)[0] = AES_Round_Two_Tables(AES0, AES1, ((uint4 *)c)[0], ((uint4 *)a)[0]);
Scratchpad[IDX((idx0 & MASK) >> 4)] = b_x ^ ((uint4 *)c)[0];
uint4 tmp;
tmp = Scratchpad[IDX((as_uint2(c[0]).s0 & MASK) >> 4)];
a[1] += c[0] * as_ulong2(tmp).s0;
a[0] += mul_hi(c[0], as_ulong2(tmp).s0);
Scratchpad[IDX((as_uint2(c[0]).s0 & MASK) >> 4)] = ((uint4 *)a)[0];
((uint4 *)a)[0] ^= tmp;
idx0 = a[0];
b_x = ((uint4 *)c)[0];
# if (ALGO == CRYPTONIGHT_HEAVY)
{
const long2 n = *((__global long2*)(Scratchpad + (IDX((idx0 & MASK) >> 4))));
long q = fast_div_heavy(n.s0, as_int4(n).s2 | 0x5);
*((__global long*)(Scratchpad + (IDX((idx0 & MASK) >> 4)))) = n.s0 ^ q;
if (variant == VARIANT_XHV) {
idx0 = (~as_int4(n).s2) ^ q;
} else {
idx0 = as_int4(n).s2 ^ q;
}
}
# endif
}
}
mem_fence(CLK_GLOBAL_MEM_FENCE);
}
__attribute__((reqd_work_group_size(8, 8, 1)))
__kernel void cn2(__global uint4 *Scratchpad, __global ulong *states, __global uint *Branch0, __global uint *Branch1, __global uint *Branch2, __global uint *Branch3, uint Threads)
{
__local uint AES0[256], AES1[256], AES2[256], AES3[256];
uint ExpandedKey2[40];
uint4 text;
const ulong gIdx = getIdx();
for (int i = get_local_id(1) * 8 + get_local_id(0); i < 256; i += 8 * 8) {
const uint tmp = AES0_C[i];
AES0[i] = tmp;
AES1[i] = rotate(tmp, 8U);
AES2[i] = rotate(tmp, 16U);
AES3[i] = rotate(tmp, 24U);
}
barrier(CLK_LOCAL_MEM_FENCE);
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
states += 25 * gIdx;
# if (STRIDED_INDEX == 0)
Scratchpad += gIdx * (MEMORY >> 4);
# elif (STRIDED_INDEX == 1)
# if (ALGO == CRYPTONIGHT_HEAVY)
Scratchpad += (gIdx / WORKSIZE) * (MEMORY >> 4) * WORKSIZE + (gIdx % WORKSIZE);
# else
Scratchpad += gIdx;
# endif
# elif (STRIDED_INDEX == 2)
Scratchpad += (gIdx / WORKSIZE) * (MEMORY >> 4) * WORKSIZE + MEM_CHUNK * (gIdx % WORKSIZE);
# endif
#if defined(__Tahiti__) || defined(__Pitcairn__)
for(int i = 0; i < 4; ++i) ((ulong *)ExpandedKey2)[i] = states[i + 4];
text = vload4(get_local_id(1) + 4, (__global uint *)states);
#else
text = vload4(get_local_id(1) + 4, (__global uint *)states);
((uint8 *)ExpandedKey2)[0] = vload8(1, (__global uint *)states);
#endif
AESExpandKey256(ExpandedKey2);
}
barrier(CLK_LOCAL_MEM_FENCE);
# if (ALGO == CRYPTONIGHT_HEAVY)
__local uint4 xin1[8][8];
__local uint4 xin2[8][8];
__local uint4* xin1_store = &xin1[get_local_id(1)][get_local_id(0)];
__local uint4* xin1_load = &xin1[(get_local_id(1) + 1) % 8][get_local_id(0)];
__local uint4* xin2_store = &xin2[get_local_id(1)][get_local_id(0)];
__local uint4* xin2_load = &xin2[(get_local_id(1) + 1) % 8][get_local_id(0)];
*xin2_store = (uint4)(0, 0, 0, 0);
# endif
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
# if (ALGO == CRYPTONIGHT_HEAVY)
#pragma unroll 2
for(int i = 0, i1 = get_local_id(1); i < (MEMORY >> 7); ++i, i1 = (i1 + 16) % (MEMORY >> 4))
{
text ^= Scratchpad[IDX(i1)];
barrier(CLK_LOCAL_MEM_FENCE);
text ^= *xin2_load;
#pragma unroll 10
for(int j = 0; j < 10; ++j)
text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey2)[j]);
*xin1_store = text;
text ^= Scratchpad[IDX(i1 + 8)];
barrier(CLK_LOCAL_MEM_FENCE);
text ^= *xin1_load;
#pragma unroll 10
for(int j = 0; j < 10; ++j)
text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey2)[j]);
*xin2_store = text;
}
barrier(CLK_LOCAL_MEM_FENCE);
text ^= *xin2_load;
# else
const uint local_id1 = get_local_id(1);
#pragma unroll 2
for (uint i = 0; i < (MEMORY >> 7); ++i) {
text ^= Scratchpad[IDX((i << 3) + local_id1)];
#pragma unroll 10
for(uint j = 0; j < 10; ++j)
text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey2)[j]);
}
# endif
}
# if (ALGO == CRYPTONIGHT_HEAVY)
/* Also left over threads performe this loop.
* The left over thread results will be ignored
*/
#pragma unroll 16
for(size_t i = 0; i < 16; i++)
{
#pragma unroll 10
for (int j = 0; j < 10; ++j) {
text = AES_Round(AES0, AES1, AES2, AES3, text, ((uint4 *)ExpandedKey2)[j]);
}
barrier(CLK_LOCAL_MEM_FENCE);
*xin1_store = text;
barrier(CLK_LOCAL_MEM_FENCE);
text ^= *xin1_load;
}
# endif
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
vstore2(as_ulong2(text), get_local_id(1) + 4, states);
}
barrier(CLK_GLOBAL_MEM_FENCE);
__local ulong State_buf[8 * 25];
# if (COMP_MODE == 1)
// do not use early return here
if (gIdx < Threads)
# endif
{
if(!get_local_id(1))
{
__local ulong* State = State_buf + get_local_id(0) * 25;
for(int i = 0; i < 25; ++i) State[i] = states[i];
keccakf1600_2(State);
for(int i = 0; i < 25; ++i) states[i] = State[i];
uint StateSwitch = State[0] & 3;
__global uint *destinationBranch1 = StateSwitch == 0 ? Branch0 : Branch1;
__global uint *destinationBranch2 = StateSwitch == 2 ? Branch2 : Branch3;
__global uint *destinationBranch = StateSwitch < 2 ? destinationBranch1 : destinationBranch2;
destinationBranch[atomic_inc(destinationBranch + Threads)] = gIdx;
}
}
mem_fence(CLK_GLOBAL_MEM_FENCE);
}
#define VSWAP8(x) (((x) >> 56) | (((x) >> 40) & 0x000000000000FF00UL) | (((x) >> 24) & 0x0000000000FF0000UL) \
| (((x) >> 8) & 0x00000000FF000000UL) | (((x) << 8) & 0x000000FF00000000UL) \
| (((x) << 24) & 0x0000FF0000000000UL) | (((x) << 40) & 0x00FF000000000000UL) | (((x) << 56) & 0xFF00000000000000UL))
#define VSWAP4(x) ((((x) >> 24) & 0xFFU) | (((x) >> 8) & 0xFF00U) | (((x) << 8) & 0xFF0000U) | (((x) << 24) & 0xFF000000U))
__kernel void Skein(__global ulong *states, __global uint *BranchBuf, __global uint *output, ulong Target, uint Threads)
{
const uint idx = get_global_id(0) - get_global_offset(0);
// do not use early return here
if(idx < Threads)
{
states += 25 * BranchBuf[idx];
// skein
ulong8 h = vload8(0, SKEIN512_256_IV);
// Type field begins with final bit, first bit, then six bits of type; the last 96
// bits are input processed (including in the block to be processed with that tweak)
// The output transform is only one run of UBI, since we need only 256 bits of output
// The tweak for the output transform is Type = Output with the Final bit set
// T[0] for the output is 8, and I don't know why - should be message size...
ulong t[3] = { 0x00UL, 0x7000000000000000UL, 0x00UL };
ulong8 p, m;
#pragma unroll 1
for (uint i = 0; i < 4; ++i)
{
t[0] += i < 3 ? 0x40UL : 0x08UL;
t[2] = t[0] ^ t[1];
m = (i < 3) ? vload8(i, states) : (ulong8)(states[24], 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL);
const ulong h8 = h.s0 ^ h.s1 ^ h.s2 ^ h.s3 ^ h.s4 ^ h.s5 ^ h.s6 ^ h.s7 ^ SKEIN_KS_PARITY;
p = Skein512Block(m, h, h8, t);
h = m ^ p;
t[1] = i < 2 ? 0x3000000000000000UL : 0xB000000000000000UL;
}
t[0] = 0x08UL;
t[1] = 0xFF00000000000000UL;
t[2] = t[0] ^ t[1];
p = (ulong8)(0);
const ulong h8 = h.s0 ^ h.s1 ^ h.s2 ^ h.s3 ^ h.s4 ^ h.s5 ^ h.s6 ^ h.s7 ^ SKEIN_KS_PARITY;
p = Skein512Block(p, h, h8, t);
// Note that comparison is equivalent to subtraction - we can't just compare 8 32-bit values
// and expect an accurate result for target > 32-bit without implementing carries
if (p.s3 <= Target) {
ulong outIdx = atomic_inc(output + 0xFF);
if (outIdx < 0xFF) {
output[outIdx] = BranchBuf[idx] + (uint) get_global_offset(0);
}
}
}
mem_fence(CLK_GLOBAL_MEM_FENCE);
}
#define SWAP8(x) as_ulong(as_uchar8(x).s76543210)
#define JHXOR \
h0h ^= input[0]; \
h0l ^= input[1]; \
h1h ^= input[2]; \
h1l ^= input[3]; \
h2h ^= input[4]; \
h2l ^= input[5]; \
h3h ^= input[6]; \
h3l ^= input[7]; \
\
E8; \
\
h4h ^= input[0]; \
h4l ^= input[1]; \
h5h ^= input[2]; \
h5l ^= input[3]; \
h6h ^= input[4]; \
h6l ^= input[5]; \
h7h ^= input[6]; \
h7l ^= input[7]
__kernel void JH(__global ulong *states, __global uint *BranchBuf, __global uint *output, ulong Target, uint Threads)
{
const uint idx = get_global_id(0) - get_global_offset(0);
// do not use early return here
if(idx < Threads)
{
states += 25 * BranchBuf[idx];
sph_u64 h0h = 0xEBD3202C41A398EBUL, h0l = 0xC145B29C7BBECD92UL, h1h = 0xFAC7D4609151931CUL, h1l = 0x038A507ED6820026UL, h2h = 0x45B92677269E23A4UL, h2l = 0x77941AD4481AFBE0UL, h3h = 0x7A176B0226ABB5CDUL, h3l = 0xA82FFF0F4224F056UL;
sph_u64 h4h = 0x754D2E7F8996A371UL, h4l = 0x62E27DF70849141DUL, h5h = 0x948F2476F7957627UL, h5l = 0x6C29804757B6D587UL, h6h = 0x6C0D8EAC2D275E5CUL, h6l = 0x0F7A0557C6508451UL, h7h = 0xEA12247067D3E47BUL, h7l = 0x69D71CD313ABE389UL;
sph_u64 tmp;
for (uint i = 0; i < 3; ++i) {
ulong input[8];
const int shifted = i << 3;
for (uint x = 0; x < 8; ++x) {
input[x] = (states[shifted + x]);
}
JHXOR;
}
{
ulong input[8] = { (states[24]), 0x80UL, 0x00UL, 0x00UL, 0x00UL, 0x00UL, 0x00UL, 0x00UL };
JHXOR;
}
{
ulong input[8] = { 0x00UL, 0x00UL, 0x00UL, 0x00UL, 0x00UL, 0x00UL, 0x00UL, 0x4006000000000000UL };
JHXOR;
}
// Note that comparison is equivalent to subtraction - we can't just compare 8 32-bit values
// and expect an accurate result for target > 32-bit without implementing carries
if (h7l <= Target) {
ulong outIdx = atomic_inc(output + 0xFF);
if (outIdx < 0xFF) {
output[outIdx] = BranchBuf[idx] + (uint) get_global_offset(0);
}
}
}
}
#define SWAP4(x) as_uint(as_uchar4(x).s3210)
__kernel void Blake(__global ulong *states, __global uint *BranchBuf, __global uint *output, ulong Target, uint Threads)
{
const uint idx = get_global_id(0) - get_global_offset(0);
// do not use early return here
if (idx < Threads)
{
states += 25 * BranchBuf[idx];
unsigned int m[16];
unsigned int v[16];
uint h[8];
uint bitlen = 0;
((uint8 *)h)[0] = vload8(0U, c_IV256);
for (uint i = 0; i < 3; ++i) {
((uint16 *)m)[0] = vload16(i, (__global uint *)states);
for (uint x = 0; x < 16; ++x) {
m[x] = SWAP4(m[x]);
}
bitlen += 512;
((uint16 *)v)[0].lo = ((uint8 *)h)[0];
((uint16 *)v)[0].hi = vload8(0U, c_u256);
v[12] ^= bitlen;
v[13] ^= bitlen;
for (uint r = 0; r < 14; r++) {
GS(0, 4, 0x8, 0xC, 0x0);
GS(1, 5, 0x9, 0xD, 0x2);
GS(2, 6, 0xA, 0xE, 0x4);
GS(3, 7, 0xB, 0xF, 0x6);
GS(0, 5, 0xA, 0xF, 0x8);
GS(1, 6, 0xB, 0xC, 0xA);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
}
((uint8 *)h)[0] ^= ((uint8 *)v)[0] ^ ((uint8 *)v)[1];
}
m[0] = SWAP4(((__global uint *)states)[48]);
m[1] = SWAP4(((__global uint *)states)[49]);
m[2] = 0x80000000U;
m[3] = 0x00U;
m[4] = 0x00U;
m[5] = 0x00U;
m[6] = 0x00U;
m[7] = 0x00U;
m[8] = 0x00U;
m[9] = 0x00U;
m[10] = 0x00U;
m[11] = 0x00U;
m[12] = 0x00U;
m[13] = 1U;
m[14] = 0U;
m[15] = 0x640;
bitlen += 64;
((uint16 *)v)[0].lo = ((uint8 *)h)[0];
((uint16 *)v)[0].hi = vload8(0U, c_u256);
v[12] ^= bitlen;
v[13] ^= bitlen;
for (uint r = 0; r < 14; r++) {
GS(0, 4, 0x8, 0xC, 0x0);
GS(1, 5, 0x9, 0xD, 0x2);
GS(2, 6, 0xA, 0xE, 0x4);
GS(3, 7, 0xB, 0xF, 0x6);
GS(0, 5, 0xA, 0xF, 0x8);
GS(1, 6, 0xB, 0xC, 0xA);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
}
((uint8 *)h)[0] ^= ((uint8 *)v)[0] ^ ((uint8 *)v)[1];
for (uint i = 0; i < 8; ++i) {
h[i] = SWAP4(h[i]);
}
// Note that comparison is equivalent to subtraction - we can't just compare 8 32-bit values
// and expect an accurate result for target > 32-bit without implementing carries
uint2 t = (uint2)(h[6],h[7]);
if (as_ulong(t) <= Target) {
ulong outIdx = atomic_inc(output + 0xFF);
if (outIdx < 0xFF) {
output[outIdx] = BranchBuf[idx] + (uint) get_global_offset(0);
}
}
}
}
#undef SWAP4
__kernel void Groestl(__global ulong *states, __global uint *BranchBuf, __global uint *output, ulong Target, uint Threads)
{
const uint idx = get_global_id(0) - get_global_offset(0);
// do not use early return here
if (idx < Threads)
{
states += 25 * BranchBuf[idx];
ulong State[8] = { 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0x0001000000000000UL };
ulong H[8], M[8];
// BUG: AMD driver 19.7.X crashs if this is written as loop
// Thx AMD for so bad software
{
((ulong8 *)M)[0] = vload8(0, states);
for (uint x = 0; x < 8; ++x) {
H[x] = M[x] ^ State[x];
}
PERM_SMALL_P(H);
PERM_SMALL_Q(M);
for (uint x = 0; x < 8; ++x) {
State[x] ^= H[x] ^ M[x];
}
}
{
((ulong8 *)M)[0] = vload8(1, states);
for (uint x = 0; x < 8; ++x) {
H[x] = M[x] ^ State[x];
}
PERM_SMALL_P(H);
PERM_SMALL_Q(M);
for (uint x = 0; x < 8; ++x) {
State[x] ^= H[x] ^ M[x];
}
}
{
((ulong8 *)M)[0] = vload8(2, states);
for (uint x = 0; x < 8; ++x) {
H[x] = M[x] ^ State[x];
}
PERM_SMALL_P(H);
PERM_SMALL_Q(M);
for (uint x = 0; x < 8; ++x) {
State[x] ^= H[x] ^ M[x];
}
}
M[0] = states[24];
M[1] = 0x80UL;
M[2] = 0UL;
M[3] = 0UL;
M[4] = 0UL;
M[5] = 0UL;
M[6] = 0UL;
M[7] = 0x0400000000000000UL;
for (uint x = 0; x < 8; ++x) {
H[x] = M[x] ^ State[x];
}
PERM_SMALL_P(H);
PERM_SMALL_Q(M);
ulong tmp[8];
for (uint i = 0; i < 8; ++i) {
tmp[i] = State[i] ^= H[i] ^ M[i];
}
PERM_SMALL_P(State);
for (uint i = 0; i < 8; ++i) {
State[i] ^= tmp[i];
}
// Note that comparison is equivalent to subtraction - we can't just compare 8 32-bit values
// and expect an accurate result for target > 32-bit without implementing carries
if (State[7] <= Target) {
ulong outIdx = atomic_inc(output + 0xFF);
if (outIdx < 0xFF) {
output[outIdx] = BranchBuf[idx] + (uint) get_global_offset(0);
}
}
}
}