Browse Source

ENABLE_MODULE_MUSIG

metaverse
jl777 5 years ago
parent
commit
c127a8f0b5
  1. 5
      src/secp256k1/Makefile.am
  2. 55
      src/secp256k1/src/ecmult.h
  3. 1176
      src/secp256k1/src/ecmult_impl.h
  4. 17
      src/secp256k1/src/modules/musig/Makefile.am.include
  5. 166
      src/secp256k1/src/modules/musig/example.c
  6. 631
      src/secp256k1/src/modules/musig/main_impl.h
  7. 758
      src/secp256k1/src/modules/musig/tests_impl.h
  8. 9
      src/secp256k1/src/modules/schnorrsig/Makefile.am.include
  9. 339
      src/secp256k1/src/modules/schnorrsig/main_impl.h
  10. 727
      src/secp256k1/src/modules/schnorrsig/tests_impl.h
  11. 235
      src/secp256k1/src/scalar.h
  12. 49
      src/secp256k1/src/scalar_4x64.h
  13. 1056
      src/secp256k1/src/scalar_4x64_impl.h
  14. 24
      src/secp256k1/src/scalar_8x32.h
  15. 838
      src/secp256k1/src/scalar_8x32_impl.h
  16. 340
      src/secp256k1/src/scalar_impl.h
  17. 20
      src/secp256k1/src/scalar_low.h
  18. 126
      src/secp256k1/src/scalar_low_impl.h

5
src/secp256k1/Makefile.am

@ -172,6 +172,11 @@ if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_MUSIG
include src/modules/schnorrsig/Makefile.am.include
include src/modules/musig/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif

55
src/secp256k1/src/ecmult.h

@ -1,3 +1,5 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
@ -29,3 +31,56 @@ static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
#endif /* SECP256K1_ECMULT_H */
#else
/**********************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_ECMULT_H
#define SECP256K1_ECMULT_H
#include "num.h"
#include "group.h"
#include "scalar.h"
#include "scratch.h"
typedef struct {
/* For accelerating the computation of a*P + b*G: */
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
#endif
} secp256k1_ecmult_context;
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
typedef int (secp256k1_ecmult_multi_callback)(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data);
/**
* Multi-multiply: R = inp_g_sc * G + sum_i ni * Ai.
* Chooses the right algorithm for a given number of points and scratch space
* size. Resets and overwrites the given scratch space. If the points do not
* fit in the scratch space the algorithm is repeatedly run with batches of
* points. If no scratch space is given then a simple algorithm is used that
* simply multiplies the points with the corresponding scalars and adds them up.
* Returns: 1 on success (including when inp_g_sc is NULL and n is 0)
* 0 if there is not enough scratch space for a single point or
* callback returns 0
*/
static int secp256k1_ecmult_multi_var(const secp256k1_ecmult_context *ctx, secp256k1_scratch *scratch, secp256k1_gej *r, const secp256k1_scalar *inp_g_sc, secp256k1_ecmult_multi_callback cb, void *cbdata, size_t n);
#endif /* SECP256K1_ECMULT_H */
#endif

1176
src/secp256k1/src/ecmult_impl.h

File diff suppressed because it is too large

17
src/secp256k1/src/modules/musig/Makefile.am.include

@ -0,0 +1,17 @@
include_HEADERS += include/secp256k1_musig.h
noinst_HEADERS += src/modules/musig/main_impl.h
noinst_HEADERS += src/modules/musig/tests_impl.h
noinst_PROGRAMS += example_musig
example_musig_SOURCES = src/modules/musig/example.c
example_musig_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include $(SECP_INCLUDES)
if !ENABLE_COVERAGE
example_musig_CPPFLAGS += -DVERIFY
endif
example_musig_LDADD = libsecp256k1.la $(SECP_LIBS)
example_musig_LDFLAGS = -static
if USE_TESTS
TESTS += example_musig
endif

166
src/secp256k1/src/modules/musig/example.c

@ -0,0 +1,166 @@
/**********************************************************************
* Copyright (c) 2018 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/**
* This file demonstrates how to use the MuSig module to create a multisignature.
* Additionally, see the documentation in include/secp256k1_musig.h.
*/
#include <stdio.h>
#include <assert.h>
#include <secp256k1.h>
#include <secp256k1_schnorrsig.h>
#include <secp256k1_musig.h>
/* Number of public keys involved in creating the aggregate signature */
#define N_SIGNERS 3
/* Create a key pair and store it in seckey and pubkey */
int create_key(const secp256k1_context* ctx, unsigned char* seckey, secp256k1_pubkey* pubkey) {
int ret;
FILE *frand = fopen("/dev/urandom", "r");
if (frand == NULL) {
return 0;
}
do {
if(!fread(seckey, 32, 1, frand)) {
fclose(frand);
return 0;
}
/* The probability that this not a valid secret key is approximately 2^-128 */
} while (!secp256k1_ec_seckey_verify(ctx, seckey));
fclose(frand);
ret = secp256k1_ec_pubkey_create(ctx, pubkey, seckey);
return ret;
}
/* Sign a message hash with the given key pairs and store the result in sig */
int sign(const secp256k1_context* ctx, unsigned char seckeys[][32], const secp256k1_pubkey* pubkeys, const unsigned char* msg32, secp256k1_schnorrsig *sig) {
secp256k1_musig_session musig_session[N_SIGNERS];
unsigned char nonce_commitment[N_SIGNERS][32];
const unsigned char *nonce_commitment_ptr[N_SIGNERS];
secp256k1_musig_session_signer_data signer_data[N_SIGNERS][N_SIGNERS];
secp256k1_pubkey nonce[N_SIGNERS];
int i, j;
secp256k1_musig_partial_signature partial_sig[N_SIGNERS];
for (i = 0; i < N_SIGNERS; i++) {
FILE *frand;
unsigned char session_id32[32];
unsigned char pk_hash[32];
secp256k1_pubkey combined_pk;
/* Create combined pubkey and initialize signer data */
if (!secp256k1_musig_pubkey_combine(ctx, NULL, &combined_pk, pk_hash, pubkeys, N_SIGNERS)) {
return 0;
}
/* Create random session ID. It is absolutely necessary that the session ID
* is unique for every call of secp256k1_musig_session_initialize. Otherwise
* it's trivial for an attacker to extract the secret key! */
frand = fopen("/dev/urandom", "r");
if(frand == NULL) {
return 0;
}
if (!fread(session_id32, 32, 1, frand)) {
fclose(frand);
return 0;
}
fclose(frand);
/* Initialize session */
if (!secp256k1_musig_session_initialize(ctx, &musig_session[i], signer_data[i], nonce_commitment[i], session_id32, msg32, &combined_pk, pk_hash, N_SIGNERS, i, seckeys[i])) {
return 0;
}
nonce_commitment_ptr[i] = &nonce_commitment[i][0];
}
/* Communication round 1: Exchange nonce commitments */
for (i = 0; i < N_SIGNERS; i++) {
/* Set nonce commitments in the signer data and get the own public nonce */
if (!secp256k1_musig_session_get_public_nonce(ctx, &musig_session[i], signer_data[i], &nonce[i], nonce_commitment_ptr, N_SIGNERS)) {
return 0;
}
}
/* Communication round 2: Exchange nonces */
for (i = 0; i < N_SIGNERS; i++) {
for (j = 0; j < N_SIGNERS; j++) {
if (!secp256k1_musig_set_nonce(ctx, &signer_data[i][j], &nonce[j])) {
/* Signer j's nonce does not match the nonce commitment. In this case
* abort the protocol. If you make another attempt at finishing the
* protocol, create a new session (with a fresh session ID!). */
return 0;
}
}
if (!secp256k1_musig_session_combine_nonces(ctx, &musig_session[i], signer_data[i], N_SIGNERS, NULL, NULL)) {
return 0;
}
}
for (i = 0; i < N_SIGNERS; i++) {
if (!secp256k1_musig_partial_sign(ctx, &musig_session[i], &partial_sig[i])) {
return 0;
}
}
/* Communication round 3: Exchange partial signatures */
for (i = 0; i < N_SIGNERS; i++) {
for (j = 0; j < N_SIGNERS; j++) {
/* To check whether signing was successful, it suffices to either verify
* the the combined signature with the combined public key using
* secp256k1_schnorrsig_verify, or verify all partial signatures of all
* signers individually. Verifying the combined signature is cheaper but
* verifying the individual partial signatures has the advantage that it
* can be used to determine which of the partial signatures are invalid
* (if any), i.e., which of the partial signatures cause the combined
* signature to be invalid and thus the protocol run to fail. It's also
* fine to first verify the combined sig, and only verify the individual
* sigs if it does not work.
*/
if (!secp256k1_musig_partial_sig_verify(ctx, &musig_session[i], &signer_data[i][j], &partial_sig[j], &pubkeys[j])) {
return 0;
}
}
}
return secp256k1_musig_partial_sig_combine(ctx, &musig_session[0], sig, partial_sig, N_SIGNERS);
}
int main(void) {
secp256k1_context* ctx;
int i;
unsigned char seckeys[N_SIGNERS][32];
secp256k1_pubkey pubkeys[N_SIGNERS];
secp256k1_pubkey combined_pk;
unsigned char msg[32] = "this_could_be_the_hash_of_a_msg!";
secp256k1_schnorrsig sig;
/* Create a context for signing and verification */
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
printf("Creating key pairs......");
for (i = 0; i < N_SIGNERS; i++) {
if (!create_key(ctx, seckeys[i], &pubkeys[i])) {
printf("FAILED\n");
return 1;
}
}
printf("ok\n");
printf("Combining public keys...");
if (!secp256k1_musig_pubkey_combine(ctx, NULL, &combined_pk, NULL, pubkeys, N_SIGNERS)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Signing message.........");
if (!sign(ctx, seckeys, pubkeys, msg, &sig)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
printf("Verifying signature.....");
if (!secp256k1_schnorrsig_verify(ctx, &sig, msg, &combined_pk)) {
printf("FAILED\n");
return 1;
}
printf("ok\n");
secp256k1_context_destroy(ctx);
return 0;
}

631
src/secp256k1/src/modules/musig/main_impl.h

@ -0,0 +1,631 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_MUSIG_MAIN_
#define _SECP256K1_MODULE_MUSIG_MAIN_
#include "include/secp256k1.h"
#include "include/secp256k1_musig.h"
#include "hash.h"
/* Computes ell = SHA256(pk[0], ..., pk[np-1]) */
static int secp256k1_musig_compute_ell(const secp256k1_context *ctx, unsigned char *ell, const secp256k1_pubkey *pk, size_t np) {
secp256k1_sha256 sha;
size_t i;
secp256k1_sha256_initialize(&sha);
for (i = 0; i < np; i++) {
unsigned char ser[33];
size_t serlen = sizeof(ser);
if (!secp256k1_ec_pubkey_serialize(ctx, ser, &serlen, &pk[i], SECP256K1_EC_COMPRESSED)) {
return 0;
}
secp256k1_sha256_write(&sha, ser, serlen);
}
secp256k1_sha256_finalize(&sha, ell);
return 1;
}
/* Initializes SHA256 with fixed midstate. This midstate was computed by applying
* SHA256 to SHA256("MuSig coefficient")||SHA256("MuSig coefficient"). */
static void secp256k1_musig_sha256_init_tagged(secp256k1_sha256 *sha) {
secp256k1_sha256_initialize(sha);
sha->s[0] = 0x0fd0690cul;
sha->s[1] = 0xfefeae97ul;
sha->s[2] = 0x996eac7ful;
sha->s[3] = 0x5c30d864ul;
sha->s[4] = 0x8c4a0573ul;
sha->s[5] = 0xaca1a22ful;
sha->s[6] = 0x6f43b801ul;
sha->s[7] = 0x85ce27cdul;
sha->bytes = 64;
}
/* Compute r = SHA256(ell, idx). The four bytes of idx are serialized least significant byte first. */
static void secp256k1_musig_coefficient(secp256k1_scalar *r, const unsigned char *ell, uint32_t idx) {
secp256k1_sha256 sha;
unsigned char buf[32];
size_t i;
secp256k1_musig_sha256_init_tagged(&sha);
secp256k1_sha256_write(&sha, ell, 32);
/* We're hashing the index of the signer instead of its public key as specified
* in the MuSig paper. This reduces the total amount of data that needs to be
* hashed.
* Additionally, it prevents creating identical musig_coefficients for identical
* public keys. A participant Bob could choose his public key to be the same as
* Alice's, then replay Alice's messages (nonce and partial signature) to create
* a valid partial signature. This is not a problem for MuSig per se, but could
* result in subtle issues with protocols building on threshold signatures.
* With the assumption that public keys are unique, hashing the index is
* equivalent to hashing the public key. Because the public key can be
* identified by the index given the ordered list of public keys (included in
* ell), the index is just a different encoding of the public key.*/
for (i = 0; i < sizeof(uint32_t); i++) {
unsigned char c = idx;
secp256k1_sha256_write(&sha, &c, 1);
idx >>= 8;
}
secp256k1_sha256_finalize(&sha, buf);
secp256k1_scalar_set_b32(r, buf, NULL);
}
typedef struct {
const secp256k1_context *ctx;
unsigned char ell[32];
const secp256k1_pubkey *pks;
} secp256k1_musig_pubkey_combine_ecmult_data;
/* Callback for batch EC multiplication to compute ell_0*P0 + ell_1*P1 + ... */
static int secp256k1_musig_pubkey_combine_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_musig_pubkey_combine_ecmult_data *ctx = (secp256k1_musig_pubkey_combine_ecmult_data *) data;
secp256k1_musig_coefficient(sc, ctx->ell, idx);
return secp256k1_pubkey_load(ctx->ctx, pt, &ctx->pks[idx]);
}
static void secp256k1_musig_signers_init(secp256k1_musig_session_signer_data *signers, uint32_t n_signers) {
uint32_t i;
for (i = 0; i < n_signers; i++) {
memset(&signers[i], 0, sizeof(signers[i]));
signers[i].index = i;
signers[i].present = 0;
}
}
int secp256k1_musig_pubkey_combine(const secp256k1_context* ctx, secp256k1_scratch_space *scratch, secp256k1_pubkey *combined_pk, unsigned char *pk_hash32, const secp256k1_pubkey *pubkeys, size_t n_pubkeys) {
secp256k1_musig_pubkey_combine_ecmult_data ecmult_data;
secp256k1_gej pkj;
secp256k1_ge pkp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(combined_pk != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(pubkeys != NULL);
ARG_CHECK(n_pubkeys > 0);
ecmult_data.ctx = ctx;
ecmult_data.pks = pubkeys;
if (!secp256k1_musig_compute_ell(ctx, ecmult_data.ell, pubkeys, n_pubkeys)) {
return 0;
}
if (!secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &pkj, NULL, secp256k1_musig_pubkey_combine_callback, (void *) &ecmult_data, n_pubkeys)) {
return 0;
}
secp256k1_ge_set_gej(&pkp, &pkj);
secp256k1_pubkey_save(combined_pk, &pkp);
if (pk_hash32 != NULL) {
memcpy(pk_hash32, ecmult_data.ell, 32);
}
return 1;
}
int secp256k1_musig_session_initialize(const secp256k1_context* ctx, secp256k1_musig_session *session, secp256k1_musig_session_signer_data *signers, unsigned char *nonce_commitment32, const unsigned char *session_id32, const unsigned char *msg32, const secp256k1_pubkey *combined_pk, const unsigned char *pk_hash32, size_t n_signers, size_t my_index, const unsigned char *seckey) {
unsigned char combined_ser[33];
size_t combined_ser_size = sizeof(combined_ser);
int overflow;
secp256k1_scalar secret;
secp256k1_scalar mu;
secp256k1_sha256 sha;
secp256k1_gej rj;
secp256k1_ge rp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(session != NULL);
ARG_CHECK(signers != NULL);
ARG_CHECK(nonce_commitment32 != NULL);
ARG_CHECK(session_id32 != NULL);
ARG_CHECK(combined_pk != NULL);
ARG_CHECK(pk_hash32 != NULL);
ARG_CHECK(seckey != NULL);
memset(session, 0, sizeof(*session));
if (msg32 != NULL) {
memcpy(session->msg, msg32, 32);
session->msg_is_set = 1;
} else {
session->msg_is_set = 0;
}
memcpy(&session->combined_pk, combined_pk, sizeof(*combined_pk));
memcpy(session->pk_hash, pk_hash32, 32);
session->nonce_is_set = 0;
session->has_secret_data = 1;
if (n_signers == 0 || my_index >= n_signers) {
return 0;
}
if (n_signers > UINT32_MAX) {
return 0;
}
session->n_signers = (uint32_t) n_signers;
secp256k1_musig_signers_init(signers, session->n_signers);
session->nonce_commitments_hash_is_set = 0;
/* Compute secret key */
secp256k1_scalar_set_b32(&secret, seckey, &overflow);
if (overflow) {
secp256k1_scalar_clear(&secret);
return 0;
}
secp256k1_musig_coefficient(&mu, pk_hash32, (uint32_t) my_index);
secp256k1_scalar_mul(&secret, &secret, &mu);
secp256k1_scalar_get_b32(session->seckey, &secret);
/* Compute secret nonce */
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, session_id32, 32);
if (session->msg_is_set) {
secp256k1_sha256_write(&sha, msg32, 32);
}
secp256k1_ec_pubkey_serialize(ctx, combined_ser, &combined_ser_size, combined_pk, SECP256K1_EC_COMPRESSED);
secp256k1_sha256_write(&sha, combined_ser, combined_ser_size);
secp256k1_sha256_write(&sha, seckey, 32);
secp256k1_sha256_finalize(&sha, session->secnonce);
secp256k1_scalar_set_b32(&secret, session->secnonce, &overflow);
if (overflow) {
secp256k1_scalar_clear(&secret);
return 0;
}
/* Compute public nonce and commitment */
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &secret);
secp256k1_ge_set_gej(&rp, &rj);
secp256k1_pubkey_save(&session->nonce, &rp);
if (nonce_commitment32 != NULL) {
unsigned char commit[33];
size_t commit_size = sizeof(commit);
secp256k1_sha256_initialize(&sha);
secp256k1_ec_pubkey_serialize(ctx, commit, &commit_size, &session->nonce, SECP256K1_EC_COMPRESSED);
secp256k1_sha256_write(&sha, commit, commit_size);
secp256k1_sha256_finalize(&sha, nonce_commitment32);
}
secp256k1_scalar_clear(&secret);
return 1;
}
int secp256k1_musig_session_get_public_nonce(const secp256k1_context* ctx, secp256k1_musig_session *session, secp256k1_musig_session_signer_data *signers, secp256k1_pubkey *nonce, const unsigned char *const *commitments, size_t n_commitments) {
secp256k1_sha256 sha;
unsigned char nonce_commitments_hash[32];
size_t i;
(void) ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(session != NULL);
ARG_CHECK(signers != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(commitments != NULL);
if (!session->has_secret_data || n_commitments != session->n_signers) {
return 0;
}
for (i = 0; i < n_commitments; i++) {
ARG_CHECK(commitments[i] != NULL);
}
secp256k1_sha256_initialize(&sha);
for (i = 0; i < n_commitments; i++) {
memcpy(signers[i].nonce_commitment, commitments[i], 32);
secp256k1_sha256_write(&sha, commitments[i], 32);
}
secp256k1_sha256_finalize(&sha, nonce_commitments_hash);
if (session->nonce_commitments_hash_is_set
&& memcmp(session->nonce_commitments_hash, nonce_commitments_hash, 32) != 0) {
/* Abort if get_public_nonce has been called before with a different array of
* commitments. */
return 0;
}
memcpy(session->nonce_commitments_hash, nonce_commitments_hash, 32);
session->nonce_commitments_hash_is_set = 1;
memcpy(nonce, &session->nonce, sizeof(*nonce));
return 1;
}
int secp256k1_musig_session_initialize_verifier(const secp256k1_context* ctx, secp256k1_musig_session *session, secp256k1_musig_session_signer_data *signers, const unsigned char *msg32, const secp256k1_pubkey *combined_pk, const unsigned char *pk_hash32, const unsigned char *const *commitments, size_t n_signers) {
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(session != NULL);
ARG_CHECK(signers != NULL);
ARG_CHECK(combined_pk != NULL);
ARG_CHECK(pk_hash32 != NULL);
ARG_CHECK(commitments != NULL);
/* Check n_signers before checking commitments to allow testing the case where
* n_signers is big without allocating the space. */
if (n_signers > UINT32_MAX) {
return 0;
}
for (i = 0; i < n_signers; i++) {
ARG_CHECK(commitments[i] != NULL);
}
(void) ctx;
memset(session, 0, sizeof(*session));
memcpy(&session->combined_pk, combined_pk, sizeof(*combined_pk));
if (n_signers == 0) {
return 0;
}
session->n_signers = (uint32_t) n_signers;
secp256k1_musig_signers_init(signers, session->n_signers);
memcpy(session->pk_hash, pk_hash32, 32);
session->nonce_is_set = 0;
session->msg_is_set = 0;
if (msg32 != NULL) {
memcpy(session->msg, msg32, 32);
session->msg_is_set = 1;
}
session->has_secret_data = 0;
session->nonce_commitments_hash_is_set = 0;
for (i = 0; i < n_signers; i++) {
memcpy(signers[i].nonce_commitment, commitments[i], 32);
}
return 1;
}
int secp256k1_musig_set_nonce(const secp256k1_context* ctx, secp256k1_musig_session_signer_data *signer, const secp256k1_pubkey *nonce) {
unsigned char commit[33];
size_t commit_size = sizeof(commit);
secp256k1_sha256 sha;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(signer != NULL);
ARG_CHECK(nonce != NULL);
secp256k1_sha256_initialize(&sha);
secp256k1_ec_pubkey_serialize(ctx, commit, &commit_size, nonce, SECP256K1_EC_COMPRESSED);
secp256k1_sha256_write(&sha, commit, commit_size);
secp256k1_sha256_finalize(&sha, commit);
if (memcmp(commit, signer->nonce_commitment, 32) != 0) {
return 0;
}
memcpy(&signer->nonce, nonce, sizeof(*nonce));
signer->present = 1;
return 1;
}
int secp256k1_musig_session_combine_nonces(const secp256k1_context* ctx, secp256k1_musig_session *session, const secp256k1_musig_session_signer_data *signers, size_t n_signers, int *nonce_is_negated, const secp256k1_pubkey *adaptor) {
secp256k1_gej combined_noncej;
secp256k1_ge combined_noncep;
secp256k1_ge noncep;
secp256k1_sha256 sha;
unsigned char nonce_commitments_hash[32];
size_t i;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(session != NULL);
ARG_CHECK(signers != NULL);
if (n_signers != session->n_signers) {
return 0;
}
secp256k1_sha256_initialize(&sha);
secp256k1_gej_set_infinity(&combined_noncej);
for (i = 0; i < n_signers; i++) {
if (!signers[i].present) {
return 0;
}
secp256k1_sha256_write(&sha, signers[i].nonce_commitment, 32);
secp256k1_pubkey_load(ctx, &noncep, &signers[i].nonce);
secp256k1_gej_add_ge_var(&combined_noncej, &combined_noncej, &noncep, NULL);
}
secp256k1_sha256_finalize(&sha, nonce_commitments_hash);
/* Either the session is a verifier session or or the nonce_commitments_hash has
* been set in `musig_session_get_public_nonce`. */
VERIFY_CHECK(!session->has_secret_data || session->nonce_commitments_hash_is_set);
if (session->has_secret_data
&& memcmp(session->nonce_commitments_hash, nonce_commitments_hash, 32) != 0) {
/* If the signers' commitments changed between get_public_nonce and now we
* have to abort because in that case they may have seen our nonce before
* creating their commitment. That can happen if the signer_data given to
* this function is different to the signer_data given to get_public_nonce.
* */
return 0;
}
/* Add public adaptor to nonce */
if (adaptor != NULL) {
secp256k1_pubkey_load(ctx, &noncep, adaptor);
secp256k1_gej_add_ge_var(&combined_noncej, &combined_noncej, &noncep, NULL);
}
secp256k1_ge_set_gej(&combined_noncep, &combined_noncej);
if (secp256k1_fe_is_quad_var(&combined_noncep.y)) {
session->nonce_is_negated = 0;
} else {
session->nonce_is_negated = 1;
secp256k1_ge_neg(&combined_noncep, &combined_noncep);
}
if (nonce_is_negated != NULL) {
*nonce_is_negated = session->nonce_is_negated;
}
secp256k1_pubkey_save(&session->combined_nonce, &combined_noncep);
session->nonce_is_set = 1;
return 1;
}
int secp256k1_musig_session_set_msg(const secp256k1_context* ctx, secp256k1_musig_session *session, const unsigned char *msg32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(session != NULL);
ARG_CHECK(msg32 != NULL);
if (session->msg_is_set) {
return 0;
}
memcpy(session->msg, msg32, 32);
session->msg_is_set = 1;
return 1;
}
int secp256k1_musig_partial_signature_serialize(const secp256k1_context* ctx, unsigned char *out32, const secp256k1_musig_partial_signature* sig) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(out32 != NULL);
ARG_CHECK(sig != NULL);
memcpy(out32, sig->data, 32);
return 1;
}
int secp256k1_musig_partial_signature_parse(const secp256k1_context* ctx, secp256k1_musig_partial_signature* sig, const unsigned char *in32) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(in32 != NULL);
memcpy(sig->data, in32, 32);
return 1;
}
/* Compute msghash = SHA256(combined_nonce, combined_pk, msg) */
static int secp256k1_musig_compute_messagehash(const secp256k1_context *ctx, unsigned char *msghash, const secp256k1_musig_session *session) {
unsigned char buf[33];
size_t bufsize = 33;
secp256k1_ge rp;
secp256k1_sha256 sha;
secp256k1_sha256_initialize(&sha);
if (!session->nonce_is_set) {
return 0;
}
secp256k1_pubkey_load(ctx, &rp, &session->combined_nonce);
secp256k1_fe_get_b32(buf, &rp.x);
secp256k1_sha256_write(&sha, buf, 32);
secp256k1_ec_pubkey_serialize(ctx, buf, &bufsize, &session->combined_pk, SECP256K1_EC_COMPRESSED);
VERIFY_CHECK(bufsize == 33);
secp256k1_sha256_write(&sha, buf, bufsize);
if (!session->msg_is_set) {
return 0;
}
secp256k1_sha256_write(&sha, session->msg, 32);
secp256k1_sha256_finalize(&sha, msghash);
return 1;
}
int secp256k1_musig_partial_sign(const secp256k1_context* ctx, const secp256k1_musig_session *session, secp256k1_musig_partial_signature *partial_sig) {
unsigned char msghash[32];
int overflow;
secp256k1_scalar sk;
secp256k1_scalar e, k;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(partial_sig != NULL);
ARG_CHECK(session != NULL);
if (!session->nonce_is_set || !session->has_secret_data) {
return 0;
}
/* build message hash */
if (!secp256k1_musig_compute_messagehash(ctx, msghash, session)) {
return 0;
}
secp256k1_scalar_set_b32(&e, msghash, NULL);
secp256k1_scalar_set_b32(&sk, session->seckey, &overflow);
if (overflow) {
secp256k1_scalar_clear(&sk);
return 0;
}
secp256k1_scalar_set_b32(&k, session->secnonce, &overflow);
if (overflow || secp256k1_scalar_is_zero(&k)) {
secp256k1_scalar_clear(&sk);
secp256k1_scalar_clear(&k);
return 0;
}
if (session->nonce_is_negated) {
secp256k1_scalar_negate(&k, &k);
}
/* Sign */
secp256k1_scalar_mul(&e, &e, &sk);
secp256k1_scalar_add(&e, &e, &k);
secp256k1_scalar_get_b32(&partial_sig->data[0], &e);
secp256k1_scalar_clear(&sk);
secp256k1_scalar_clear(&k);
return 1;
}
int secp256k1_musig_partial_sig_combine(const secp256k1_context* ctx, const secp256k1_musig_session *session, secp256k1_schnorrsig *sig, const secp256k1_musig_partial_signature *partial_sigs, size_t n_sigs) {
size_t i;
secp256k1_scalar s;
secp256k1_ge noncep;
(void) ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(partial_sigs != NULL);
ARG_CHECK(session != NULL);
if (!session->nonce_is_set) {
return 0;
}
if (n_sigs != session->n_signers) {
return 0;
}
secp256k1_scalar_clear(&s);
for (i = 0; i < n_sigs; i++) {
int overflow;
secp256k1_scalar term;
secp256k1_scalar_set_b32(&term, partial_sigs[i].data, &overflow);
if (overflow) {
return 0;
}
secp256k1_scalar_add(&s, &s, &term);
}
secp256k1_pubkey_load(ctx, &noncep, &session->combined_nonce);
VERIFY_CHECK(secp256k1_fe_is_quad_var(&noncep.y));
secp256k1_fe_normalize(&noncep.x);
secp256k1_fe_get_b32(&sig->data[0], &noncep.x);
secp256k1_scalar_get_b32(&sig->data[32], &s);
return 1;
}
int secp256k1_musig_partial_sig_verify(const secp256k1_context* ctx, const secp256k1_musig_session *session, const secp256k1_musig_session_signer_data *signer, const secp256k1_musig_partial_signature *partial_sig, const secp256k1_pubkey *pubkey) {
unsigned char msghash[32];
secp256k1_scalar s;
secp256k1_scalar e;
secp256k1_scalar mu;
secp256k1_gej rj;
secp256k1_ge rp;
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(session != NULL);
ARG_CHECK(signer != NULL);
ARG_CHECK(partial_sig != NULL);
ARG_CHECK(pubkey != NULL);
if (!session->nonce_is_set || !signer->present) {
return 0;
}
secp256k1_scalar_set_b32(&s, partial_sig->data, &overflow);
if (overflow) {
return 0;
}
if (!secp256k1_musig_compute_messagehash(ctx, msghash, session)) {
return 0;
}
secp256k1_scalar_set_b32(&e, msghash, NULL);
/* Multiplying the messagehash by the musig coefficient is equivalent
* to multiplying the signer's public key by the coefficient, except
* much easier to do. */
secp256k1_musig_coefficient(&mu, session->pk_hash, signer->index);
secp256k1_scalar_mul(&e, &e, &mu);
if (!secp256k1_pubkey_load(ctx, &rp, &signer->nonce)) {
return 0;
}
if (!secp256k1_schnorrsig_real_verify(ctx, &rj, &s, &e, pubkey)) {
return 0;
}
if (!session->nonce_is_negated) {
secp256k1_ge_neg(&rp, &rp);
}
secp256k1_gej_add_ge_var(&rj, &rj, &rp, NULL);
return secp256k1_gej_is_infinity(&rj);
}
int secp256k1_musig_partial_sig_adapt(const secp256k1_context* ctx, secp256k1_musig_partial_signature *adaptor_sig, const secp256k1_musig_partial_signature *partial_sig, const unsigned char *sec_adaptor32, int nonce_is_negated) {
secp256k1_scalar s;
secp256k1_scalar t;
int overflow;
(void) ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(adaptor_sig != NULL);
ARG_CHECK(partial_sig != NULL);
ARG_CHECK(sec_adaptor32 != NULL);
secp256k1_scalar_set_b32(&s, partial_sig->data, &overflow);
if (overflow) {
return 0;
}
secp256k1_scalar_set_b32(&t, sec_adaptor32, &overflow);
if (overflow) {
secp256k1_scalar_clear(&t);
return 0;
}
if (nonce_is_negated) {
secp256k1_scalar_negate(&t, &t);
}
secp256k1_scalar_add(&s, &s, &t);
secp256k1_scalar_get_b32(adaptor_sig->data, &s);
secp256k1_scalar_clear(&t);
return 1;
}
int secp256k1_musig_extract_secret_adaptor(const secp256k1_context* ctx, unsigned char *sec_adaptor32, const secp256k1_schnorrsig *sig, const secp256k1_musig_partial_signature *partial_sigs, size_t n_partial_sigs, int nonce_is_negated) {
secp256k1_scalar t;
secp256k1_scalar s;
int overflow;
size_t i;
(void) ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sec_adaptor32 != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(partial_sigs != NULL);
secp256k1_scalar_set_b32(&t, &sig->data[32], &overflow);
if (overflow) {
return 0;
}
secp256k1_scalar_negate(&t, &t);
for (i = 0; i < n_partial_sigs; i++) {
secp256k1_scalar_set_b32(&s, partial_sigs[i].data, &overflow);
if (overflow) {
secp256k1_scalar_clear(&t);
return 0;
}
secp256k1_scalar_add(&t, &t, &s);
}
if (!nonce_is_negated) {
secp256k1_scalar_negate(&t, &t);
}
secp256k1_scalar_get_b32(sec_adaptor32, &t);
secp256k1_scalar_clear(&t);
return 1;
}
#endif

758
src/secp256k1/src/modules/musig/tests_impl.h

@ -0,0 +1,758 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_MUSIG_TESTS_
#define _SECP256K1_MODULE_MUSIG_TESTS_
#include "secp256k1_musig.h"
void musig_api_tests(secp256k1_scratch_space *scratch) {
secp256k1_scratch_space *scratch_small;
secp256k1_musig_session session[2];
secp256k1_musig_session verifier_session;
secp256k1_musig_session_signer_data signer0[2];
secp256k1_musig_session_signer_data signer1[2];
secp256k1_musig_session_signer_data verifier_signer_data[2];
secp256k1_musig_partial_signature partial_sig[2];
secp256k1_musig_partial_signature partial_sig_adapted[2];
secp256k1_musig_partial_signature partial_sig_overflow;
secp256k1_schnorrsig final_sig;
secp256k1_schnorrsig final_sig_cmp;
unsigned char buf[32];
unsigned char sk[2][32];
unsigned char ones[32];
unsigned char session_id[2][32];
unsigned char nonce_commitment[2][32];
int nonce_is_negated;
const unsigned char *ncs[2];
unsigned char msg[32];
unsigned char msghash[32];
secp256k1_pubkey combined_pk;
unsigned char pk_hash[32];
secp256k1_pubkey pk[2];
unsigned char sec_adaptor[32];
unsigned char sec_adaptor1[32];
secp256k1_pubkey adaptor;
/** setup **/
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
int ecount;
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
memset(ones, 0xff, 32);
secp256k1_rand256(session_id[0]);
secp256k1_rand256(session_id[1]);
secp256k1_rand256(sk[0]);
secp256k1_rand256(sk[1]);
secp256k1_rand256(msg);
secp256k1_rand256(sec_adaptor);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk[0]) == 1);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[1], sk[1]) == 1);
CHECK(secp256k1_ec_pubkey_create(ctx, &adaptor, sec_adaptor) == 1);
/** main test body **/
/* Key combination */
ecount = 0;
CHECK(secp256k1_musig_pubkey_combine(none, scratch, &combined_pk, pk_hash, pk, 2) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_pubkey_combine(sign, scratch, &combined_pk, pk_hash, pk, 2) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1);
CHECK(ecount == 2);
/* pubkey_combine does not require a scratch space */
CHECK(secp256k1_musig_pubkey_combine(vrfy, NULL, &combined_pk, pk_hash, pk, 2) == 1);
CHECK(ecount == 2);
/* If a scratch space is given it shouldn't be too small */
scratch_small = secp256k1_scratch_space_create(ctx, 1);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch_small, &combined_pk, pk_hash, pk, 2) == 0);
secp256k1_scratch_space_destroy(scratch_small);
CHECK(ecount == 2);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, NULL, pk_hash, pk, 2) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, NULL, pk, 2) == 1);
CHECK(ecount == 3);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, NULL, 2) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 0) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, NULL, 0) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1);
CHECK(secp256k1_musig_pubkey_combine(vrfy, scratch, &combined_pk, pk_hash, pk, 2) == 1);
/** Session creation **/
ecount = 0;
CHECK(secp256k1_musig_session_initialize(none, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_session_initialize(vrfy, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_musig_session_initialize(sign, NULL, signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], NULL, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, NULL, session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], NULL, msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], NULL, &combined_pk, pk_hash, 2, 0, sk[0]) == 1);
CHECK(ecount == 6);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, NULL, pk_hash, 2, 0, sk[0]) == 0);
CHECK(ecount == 7);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, NULL, 2, 0, sk[0]) == 0);
CHECK(ecount == 8);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 0, 0, sk[0]) == 0);
CHECK(ecount == 8);
/* If more than UINT32_MAX fits in a size_t, test that session_initialize
* rejects n_signers that high. */
if (SIZE_MAX > UINT32_MAX) {
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, ((size_t) UINT32_MAX) + 2, 0, sk[0]) == 0);
}
CHECK(ecount == 8);
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, NULL) == 0);
CHECK(ecount == 9);
/* secret key overflows */
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, ones) == 0);
CHECK(ecount == 9);
{
secp256k1_musig_session session_without_msg;
CHECK(secp256k1_musig_session_initialize(sign, &session_without_msg, signer0, nonce_commitment[0], session_id[0], NULL, &combined_pk, pk_hash, 2, 0, sk[0]) == 1);
CHECK(secp256k1_musig_session_set_msg(none, &session_without_msg, msg) == 1);
CHECK(secp256k1_musig_session_set_msg(none, &session_without_msg, msg) == 0);
}
CHECK(secp256k1_musig_session_initialize(sign, &session[0], signer0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 1);
CHECK(secp256k1_musig_session_initialize(sign, &session[1], signer1, nonce_commitment[1], session_id[1], msg, &combined_pk, pk_hash, 2, 1, sk[1]) == 1);
ncs[0] = nonce_commitment[0];
ncs[1] = nonce_commitment[1];
ecount = 0;
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 2) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_musig_session_initialize_verifier(none, NULL, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 2) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, NULL, &combined_pk, pk_hash, ncs, 2) == 1);
CHECK(ecount == 1);
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, NULL, pk_hash, ncs, 2) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, NULL, ncs, 2) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, NULL, 2) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 0) == 0);
CHECK(ecount == 4);
if (SIZE_MAX > UINT32_MAX) {
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, ((size_t) UINT32_MAX) + 2) == 0);
}
CHECK(ecount == 4);
CHECK(secp256k1_musig_session_initialize_verifier(none, &verifier_session, verifier_signer_data, msg, &combined_pk, pk_hash, ncs, 2) == 1);
CHECK(secp256k1_musig_compute_messagehash(none, msghash, &verifier_session) == 0);
CHECK(secp256k1_musig_compute_messagehash(none, msghash, &session[0]) == 0);
/** Signing step 0 -- exchange nonce commitments */
ecount = 0;
{
secp256k1_pubkey nonce;
/* Can obtain public nonce after commitments have been exchanged; still can't sign */
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &nonce, ncs, 2) == 1);
CHECK(secp256k1_musig_partial_sign(none, &session[0], &partial_sig[0]) == 0);
CHECK(ecount == 0);
}
/** Signing step 1 -- exchange nonces */
ecount = 0;
{
secp256k1_pubkey public_nonce[3];
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], ncs, 2) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_musig_session_get_public_nonce(none, NULL, signer0, &public_nonce[0], ncs, 2) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], NULL, &public_nonce[0], ncs, 2) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, NULL, ncs, 2) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], NULL, 2) == 0);
CHECK(ecount == 4);
/* Number of commitments and number of signers are different */
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], ncs, 1) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[0], signer0, &public_nonce[0], ncs, 2) == 1);
CHECK(secp256k1_musig_session_get_public_nonce(none, &session[1], signer1, &public_nonce[1], ncs, 2) == 1);
CHECK(secp256k1_musig_set_nonce(none, &signer0[0], &public_nonce[0]) == 1);
CHECK(secp256k1_musig_set_nonce(none, &signer0[1], &public_nonce[0]) == 0);
CHECK(secp256k1_musig_set_nonce(none, &signer0[1], &public_nonce[1]) == 1);
CHECK(secp256k1_musig_set_nonce(none, &signer0[1], &public_nonce[1]) == 1);
CHECK(ecount == 4);
CHECK(secp256k1_musig_set_nonce(none, NULL, &public_nonce[0]) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_musig_set_nonce(none, &signer1[0], NULL) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_musig_set_nonce(none, &signer1[0], &public_nonce[0]) == 1);
CHECK(secp256k1_musig_set_nonce(none, &signer1[1], &public_nonce[1]) == 1);
CHECK(secp256k1_musig_set_nonce(none, &verifier_signer_data[0], &public_nonce[0]) == 1);
CHECK(secp256k1_musig_set_nonce(none, &verifier_signer_data[1], &public_nonce[1]) == 1);
ecount = 0;
CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, &nonce_is_negated, &adaptor) == 1);
CHECK(secp256k1_musig_session_combine_nonces(none, NULL, signer0, 2, &nonce_is_negated, &adaptor) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], NULL, 2, &nonce_is_negated, &adaptor) == 0);
CHECK(ecount == 2);
/* Number of signers differs from number during intialization */
CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 1, &nonce_is_negated, &adaptor) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, NULL, &adaptor) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, &nonce_is_negated, NULL) == 1);
CHECK(secp256k1_musig_session_combine_nonces(none, &session[0], signer0, 2, &nonce_is_negated, &adaptor) == 1);
CHECK(secp256k1_musig_session_combine_nonces(none, &session[1], signer0, 2, &nonce_is_negated, &adaptor) == 1);
CHECK(secp256k1_musig_session_combine_nonces(none, &verifier_session, verifier_signer_data, 2, &nonce_is_negated, &adaptor) == 1);
}
/** Signing step 2 -- partial signatures */
ecount = 0;
CHECK(secp256k1_musig_partial_sign(none, &session[0], &partial_sig[0]) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_musig_partial_sign(none, NULL, &partial_sig[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_partial_sign(none, &session[0], NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sign(none, &session[0], &partial_sig[0]) == 1);
CHECK(secp256k1_musig_partial_sign(none, &session[1], &partial_sig[1]) == 1);
/* observer can't sign */
CHECK(secp256k1_musig_partial_sign(none, &verifier_session, &partial_sig[2]) == 0);
CHECK(ecount == 2);
ecount = 0;
CHECK(secp256k1_musig_partial_signature_serialize(none, buf, &partial_sig[0]) == 1);
CHECK(secp256k1_musig_partial_signature_serialize(none, NULL, &partial_sig[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_partial_signature_serialize(none, buf, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_signature_parse(none, &partial_sig[0], buf) == 1);
CHECK(secp256k1_musig_partial_signature_parse(none, NULL, buf) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_partial_signature_parse(none, &partial_sig[0], NULL) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_musig_partial_signature_parse(none, &partial_sig_overflow, ones) == 1);
/** Partial signature verification */
ecount = 0;
CHECK(secp256k1_musig_partial_sig_verify(none, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_partial_sig_verify(sign, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[1], &pk[0]) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, NULL, &signer0[0], &partial_sig[0], &pk[0]) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], NULL, &partial_sig[0], &pk[0]) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], NULL, &pk[0]) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig_overflow, &pk[0]) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[0], NULL) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[0], &partial_sig[0], &pk[0]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[1], &signer1[0], &partial_sig[0], &pk[0]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[0], &signer0[1], &partial_sig[1], &pk[1]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &session[1], &signer1[1], &partial_sig[1], &pk[1]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &verifier_session, &verifier_signer_data[0], &partial_sig[0], &pk[0]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(vrfy, &verifier_session, &verifier_signer_data[1], &partial_sig[1], &pk[1]) == 1);
CHECK(ecount == 6);
/** Adaptor signature verification */
memcpy(&partial_sig_adapted[1], &partial_sig[1], sizeof(partial_sig_adapted[1]));
ecount = 0;
CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig[0], sec_adaptor, nonce_is_negated) == 1);
CHECK(secp256k1_musig_partial_sig_adapt(none, NULL, &partial_sig[0], sec_adaptor, 0) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], NULL, sec_adaptor, 0) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig_overflow, sec_adaptor, nonce_is_negated) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig[0], NULL, 0) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_musig_partial_sig_adapt(none, &partial_sig_adapted[0], &partial_sig[0], ones, nonce_is_negated) == 0);
CHECK(ecount == 3);
/** Signing combining and verification */
ecount = 0;
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, partial_sig_adapted, 2) == 1);
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig_cmp, partial_sig_adapted, 2) == 1);
CHECK(memcmp(&final_sig, &final_sig_cmp, sizeof(final_sig)) == 0);
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig_cmp, partial_sig_adapted, 2) == 1);
CHECK(memcmp(&final_sig, &final_sig_cmp, sizeof(final_sig)) == 0);
CHECK(secp256k1_musig_partial_sig_combine(none, NULL, &final_sig, partial_sig_adapted, 2) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], NULL, partial_sig_adapted, 2) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, NULL, 2) == 0);
CHECK(ecount == 3);
{
secp256k1_musig_partial_signature partial_sig_tmp[2];
partial_sig_tmp[0] = partial_sig_adapted[0];
partial_sig_tmp[1] = partial_sig_overflow;
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, partial_sig_tmp, 2) == 0);
}
CHECK(ecount == 3);
/* Wrong number of partial sigs */
CHECK(secp256k1_musig_partial_sig_combine(none, &session[0], &final_sig, partial_sig_adapted, 1) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_verify(vrfy, &final_sig, msg, &combined_pk) == 1);
/** Secret adaptor can be extracted from signature */
ecount = 0;
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig, 2, nonce_is_negated) == 1);
CHECK(memcmp(sec_adaptor, sec_adaptor1, 32) == 0);
CHECK(secp256k1_musig_extract_secret_adaptor(none, NULL, &final_sig, partial_sig, 2, 0) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, NULL, partial_sig, 2, 0) == 0);
CHECK(ecount == 2);
{
secp256k1_schnorrsig final_sig_tmp = final_sig;
memcpy(&final_sig_tmp.data[32], ones, 32);
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig_tmp, partial_sig, 2, nonce_is_negated) == 0);
}
CHECK(ecount == 2);
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, NULL, 2, 0) == 0);
CHECK(ecount == 3);
{
secp256k1_musig_partial_signature partial_sig_tmp[2];
partial_sig_tmp[0] = partial_sig[0];
partial_sig_tmp[1] = partial_sig_overflow;
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig_tmp, 2, nonce_is_negated) == 0);
}
CHECK(ecount == 3);
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig, 0, 0) == 1);
CHECK(secp256k1_musig_extract_secret_adaptor(none, sec_adaptor1, &final_sig, partial_sig, 2, 1) == 1);
/** cleanup **/
memset(&session, 0, sizeof(session));
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
}
/* Initializes two sessions, one use the given parameters (session_id,
* nonce_commitments, etc.) except that `session_tmp` uses new signers with different
* public keys. The point of this test is to call `musig_session_get_public_nonce`
* with signers from `session_tmp` who have different public keys than the correct
* ones and return the resulting messagehash. This should not result in a different
* messagehash because the public keys of the signers are only used during session
* initialization. */
int musig_state_machine_diff_signer_msghash_test(unsigned char *msghash, secp256k1_pubkey *pks, secp256k1_pubkey *combined_pk, unsigned char *pk_hash, const unsigned char * const *nonce_commitments, unsigned char *msg, secp256k1_pubkey *nonce_other, unsigned char *sk, unsigned char *session_id) {
secp256k1_musig_session session;
secp256k1_musig_session session_tmp;
unsigned char nonce_commitment[32];
secp256k1_musig_session_signer_data signers[2];
secp256k1_musig_session_signer_data signers_tmp[2];
unsigned char sk_dummy[32];
secp256k1_pubkey pks_tmp[2];
secp256k1_pubkey combined_pk_tmp;
unsigned char pk_hash_tmp[32];
secp256k1_pubkey nonce;
/* Set up signers with different public keys */
secp256k1_rand256(sk_dummy);
pks_tmp[0] = pks[0];
CHECK(secp256k1_ec_pubkey_create(ctx, &pks_tmp[1], sk_dummy) == 1);
CHECK(secp256k1_musig_pubkey_combine(ctx, NULL, &combined_pk_tmp, pk_hash_tmp, pks_tmp, 2) == 1);
CHECK(secp256k1_musig_session_initialize(ctx, &session_tmp, signers_tmp, nonce_commitment, session_id, msg, &combined_pk_tmp, pk_hash_tmp, 2, 0, sk_dummy) == 1);
CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 0, sk) == 1);
CHECK(memcmp(nonce_commitment, nonce_commitments[1], 32) == 0);
/* Call get_public_nonce with different signers than the signers the session was
* initialized with. */
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session_tmp, signers, &nonce, nonce_commitments, 2) == 1);
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers_tmp, &nonce, nonce_commitments, 2) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1);
CHECK(secp256k1_musig_session_combine_nonces(ctx, &session, signers, 2, NULL, NULL) == 1);
return secp256k1_musig_compute_messagehash(ctx, msghash, &session);
}
/* Creates a new session (with a different session id) and tries to use that session
* to combine nonces with given signers_other. This should fail, because the nonce
* commitments of signers_other do not match the nonce commitments the new session
* was initialized with. If do_test is 0, the correct signers are being used and
* therefore the function should return 1. */
int musig_state_machine_diff_signers_combine_nonce_test(secp256k1_pubkey *combined_pk, unsigned char *pk_hash, unsigned char *nonce_commitment_other, secp256k1_pubkey *nonce_other, unsigned char *msg, unsigned char *sk, secp256k1_musig_session_signer_data *signers_other, int do_test) {
secp256k1_musig_session session;
secp256k1_musig_session_signer_data signers[2];
secp256k1_musig_session_signer_data *signers_to_use;
unsigned char nonce_commitment[32];
unsigned char session_id[32];
secp256k1_pubkey nonce;
const unsigned char *ncs[2];
/* Initialize new signers */
secp256k1_rand256(session_id);
CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 1, sk) == 1);
ncs[0] = nonce_commitment_other;
ncs[1] = nonce_commitment;
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers, &nonce, ncs, 2) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1);
secp256k1_musig_session_combine_nonces(ctx, &session, signers_other, 2, NULL, NULL);
if (do_test) {
signers_to_use = signers_other;
} else {
signers_to_use = signers;
}
return secp256k1_musig_session_combine_nonces(ctx, &session, signers_to_use, 2, NULL, NULL);
}
/* Recreates a session with the given session_id, signers, pk, msg etc. parameters
* and tries to sign and verify the other signers partial signature. Both should fail
* if msg is NULL. */
int musig_state_machine_missing_msg_test(secp256k1_pubkey *pks, secp256k1_pubkey *combined_pk, unsigned char *pk_hash, unsigned char *nonce_commitment_other, secp256k1_pubkey *nonce_other, secp256k1_musig_partial_signature *partial_sig_other, unsigned char *sk, unsigned char *session_id, unsigned char *msg) {
secp256k1_musig_session session;
secp256k1_musig_session_signer_data signers[2];
unsigned char nonce_commitment[32];
const unsigned char *ncs[2];
secp256k1_pubkey nonce;
secp256k1_musig_partial_signature partial_sig;
int partial_sign, partial_verify;
CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 0, sk) == 1);
ncs[0] = nonce_commitment_other;
ncs[1] = nonce_commitment;
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers, &nonce, ncs, 2) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1);
CHECK(secp256k1_musig_session_combine_nonces(ctx, &session, signers, 2, NULL, NULL) == 1);
partial_sign = secp256k1_musig_partial_sign(ctx, &session, &partial_sig);
partial_verify = secp256k1_musig_partial_sig_verify(ctx, &session, &signers[0], partial_sig_other, &pks[0]);
if (msg != NULL) {
/* Return 1 if both succeeded */
return partial_sign && partial_verify;
}
/* Return 0 if both failed */
return partial_sign || partial_verify;
}
/* Recreates a session with the given session_id, signers, pk, msg etc. parameters
* and tries to verify and combine partial sigs. If do_combine is 0, the
* combine_nonces step is left out. In that case verify and combine should fail and
* this function should return 0. */
int musig_state_machine_missing_combine_test(secp256k1_pubkey *pks, secp256k1_pubkey *combined_pk, unsigned char *pk_hash, unsigned char *nonce_commitment_other, secp256k1_pubkey *nonce_other, secp256k1_musig_partial_signature *partial_sig_other, unsigned char *msg, unsigned char *sk, unsigned char *session_id, secp256k1_musig_partial_signature *partial_sig, int do_combine) {
secp256k1_musig_session session;
secp256k1_musig_session_signer_data signers[2];
unsigned char nonce_commitment[32];
const unsigned char *ncs[2];
secp256k1_pubkey nonce;
secp256k1_musig_partial_signature partial_sigs[2];
secp256k1_schnorrsig sig;
int partial_verify, sig_combine;
CHECK(secp256k1_musig_session_initialize(ctx, &session, signers, nonce_commitment, session_id, msg, combined_pk, pk_hash, 2, 0, sk) == 1);
ncs[0] = nonce_commitment_other;
ncs[1] = nonce_commitment;
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session, signers, &nonce, ncs, 2) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[0], nonce_other) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers[1], &nonce) == 1);
partial_sigs[0] = *partial_sig_other;
partial_sigs[1] = *partial_sig;
if (do_combine != 0) {
CHECK(secp256k1_musig_session_combine_nonces(ctx, &session, signers, 2, NULL, NULL) == 1);
}
partial_verify = secp256k1_musig_partial_sig_verify(ctx, &session, signers, partial_sig_other, &pks[0]);
sig_combine = secp256k1_musig_partial_sig_combine(ctx, &session, &sig, partial_sigs, 2);
if (do_combine != 0) {
/* Return 1 if both succeeded */
return partial_verify && sig_combine;
}
/* Return 0 if both failed */
return partial_verify || sig_combine;
}
void musig_state_machine_tests(secp256k1_scratch_space *scratch) {
size_t i;
secp256k1_musig_session session[2];
secp256k1_musig_session_signer_data signers0[2];
secp256k1_musig_session_signer_data signers1[2];
unsigned char nonce_commitment[2][32];
unsigned char session_id[2][32];
unsigned char msg[32];
unsigned char sk[2][32];
secp256k1_pubkey pk[2];
secp256k1_pubkey combined_pk;
unsigned char pk_hash[32];
secp256k1_pubkey nonce[2];
const unsigned char *ncs[2];
secp256k1_musig_partial_signature partial_sig[2];
unsigned char msghash1[32];
unsigned char msghash2[32];
/* Run state machine with the same objects twice to test that it's allowed to
* reinitialize session and session_signer_data. */
for (i = 0; i < 2; i++) {
/* Setup */
secp256k1_rand256(session_id[0]);
secp256k1_rand256(session_id[1]);
secp256k1_rand256(sk[0]);
secp256k1_rand256(sk[1]);
secp256k1_rand256(msg);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk[0]) == 1);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[1], sk[1]) == 1);
CHECK(secp256k1_musig_pubkey_combine(ctx, scratch, &combined_pk, pk_hash, pk, 2) == 1);
CHECK(secp256k1_musig_session_initialize(ctx, &session[0], signers0, nonce_commitment[0], session_id[0], msg, &combined_pk, pk_hash, 2, 0, sk[0]) == 1);
CHECK(secp256k1_musig_session_initialize(ctx, &session[1], signers1, nonce_commitment[1], session_id[1], msg, &combined_pk, pk_hash, 2, 1, sk[1]) == 1);
/* Set nonce commitments */
ncs[0] = nonce_commitment[0];
ncs[1] = nonce_commitment[1];
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[0], signers0, &nonce[0], ncs, 2) == 1);
/* Changing a nonce commitment is not okay */
ncs[1] = (unsigned char*) "this isn't a nonce commitment...";
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[0], signers0, &nonce[0], ncs, 2) == 0);
/* Repeating with the same nonce commitments is okay */
ncs[1] = nonce_commitment[1];
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[0], signers0, &nonce[0], ncs, 2) == 1);
/* Get nonce for signer 1 */
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &session[1], signers1, &nonce[1], ncs, 2) == 1);
/* Set nonces */
CHECK(secp256k1_musig_set_nonce(ctx, &signers0[0], &nonce[0]) == 1);
/* Can't set nonce that doesn't match nonce commitment */
CHECK(secp256k1_musig_set_nonce(ctx, &signers0[1], &nonce[0]) == 0);
/* Set correct nonce */
CHECK(secp256k1_musig_set_nonce(ctx, &signers0[1], &nonce[1]) == 1);
/* Combine nonces */
CHECK(secp256k1_musig_session_combine_nonces(ctx, &session[0], signers0, 2, NULL, NULL) == 1);
/* Not everyone is present from signer 1's view */
CHECK(secp256k1_musig_session_combine_nonces(ctx, &session[1], signers1, 2, NULL, NULL) == 0);
/* Make everyone present */
CHECK(secp256k1_musig_set_nonce(ctx, &signers1[0], &nonce[0]) == 1);
CHECK(secp256k1_musig_set_nonce(ctx, &signers1[1], &nonce[1]) == 1);
/* Can't combine nonces from signers of a different session */
CHECK(musig_state_machine_diff_signers_combine_nonce_test(&combined_pk, pk_hash, nonce_commitment[0], &nonce[0], msg, sk[1], signers1, 1) == 0);
CHECK(musig_state_machine_diff_signers_combine_nonce_test(&combined_pk, pk_hash, nonce_commitment[0], &nonce[0], msg, sk[1], signers1, 0) == 1);
/* Partially sign */
CHECK(secp256k1_musig_partial_sign(ctx, &session[0], &partial_sig[0]) == 1);
/* Can't verify or sign until nonce is combined */
CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[0], &partial_sig[0], &pk[0]) == 0);
CHECK(secp256k1_musig_partial_sign(ctx, &session[1], &partial_sig[1]) == 0);
CHECK(secp256k1_musig_session_combine_nonces(ctx, &session[1], signers1, 2, NULL, NULL) == 1);
CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[0], &partial_sig[0], &pk[0]) == 1);
/* messagehash should be the same as a session whose get_public_nonce was called
* with different signers (i.e. they diff in public keys). This is because the
* public keys of the signers is set in stone when initializing the session. */
CHECK(secp256k1_musig_compute_messagehash(ctx, msghash1, &session[1]) == 1);
CHECK(musig_state_machine_diff_signer_msghash_test(msghash2, pk, &combined_pk, pk_hash, ncs, msg, &nonce[0], sk[1], session_id[1]) == 1);
CHECK(memcmp(msghash1, msghash2, 32) == 0);
CHECK(secp256k1_musig_partial_sign(ctx, &session[1], &partial_sig[1]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[1], &partial_sig[1], &pk[1]) == 1);
/* Wrong signature */
CHECK(secp256k1_musig_partial_sig_verify(ctx, &session[1], &signers1[1], &partial_sig[0], &pk[1]) == 0);
/* Can't sign or verify until msg is set */
CHECK(musig_state_machine_missing_msg_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], sk[1], session_id[1], NULL) == 0);
CHECK(musig_state_machine_missing_msg_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], sk[1], session_id[1], msg) == 1);
/* Can't verify and combine partial sigs until nonces are combined */
CHECK(musig_state_machine_missing_combine_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], msg, sk[1], session_id[1], &partial_sig[1], 0) == 0);
CHECK(musig_state_machine_missing_combine_test(pk, &combined_pk, pk_hash, nonce_commitment[0], &nonce[0], &partial_sig[0], msg, sk[1], session_id[1], &partial_sig[1], 1) == 1);
}
}
void scriptless_atomic_swap(secp256k1_scratch_space *scratch) {
/* Throughout this test "a" and "b" refer to two hypothetical blockchains,
* while the indices 0 and 1 refer to the two signers. Here signer 0 is
* sending a-coins to signer 1, while signer 1 is sending b-coins to signer
* 0. Signer 0 produces the adaptor signatures. */
secp256k1_schnorrsig final_sig_a;
secp256k1_schnorrsig final_sig_b;
secp256k1_musig_partial_signature partial_sig_a[2];
secp256k1_musig_partial_signature partial_sig_b_adapted[2];
secp256k1_musig_partial_signature partial_sig_b[2];
unsigned char sec_adaptor[32];
unsigned char sec_adaptor_extracted[32];
secp256k1_pubkey pub_adaptor;
unsigned char seckey_a[2][32];
unsigned char seckey_b[2][32];
secp256k1_pubkey pk_a[2];
secp256k1_pubkey pk_b[2];
unsigned char pk_hash_a[32];
unsigned char pk_hash_b[32];
secp256k1_pubkey combined_pk_a;
secp256k1_pubkey combined_pk_b;
secp256k1_musig_session musig_session_a[2];
secp256k1_musig_session musig_session_b[2];
unsigned char noncommit_a[2][32];
unsigned char noncommit_b[2][32];
const unsigned char *noncommit_a_ptr[2];
const unsigned char *noncommit_b_ptr[2];
secp256k1_pubkey pubnon_a[2];
secp256k1_pubkey pubnon_b[2];
int nonce_is_negated_a;
int nonce_is_negated_b;
secp256k1_musig_session_signer_data data_a[2];
secp256k1_musig_session_signer_data data_b[2];
const unsigned char seed[32] = "still tired of choosing seeds...";
const unsigned char msg32_a[32] = "this is the message blockchain a";
const unsigned char msg32_b[32] = "this is the message blockchain b";
/* Step 1: key setup */
secp256k1_rand256(seckey_a[0]);
secp256k1_rand256(seckey_a[1]);
secp256k1_rand256(seckey_b[0]);
secp256k1_rand256(seckey_b[1]);
secp256k1_rand256(sec_adaptor);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk_a[0], seckey_a[0]));
CHECK(secp256k1_ec_pubkey_create(ctx, &pk_a[1], seckey_a[1]));
CHECK(secp256k1_ec_pubkey_create(ctx, &pk_b[0], seckey_b[0]));
CHECK(secp256k1_ec_pubkey_create(ctx, &pk_b[1], seckey_b[1]));
CHECK(secp256k1_ec_pubkey_create(ctx, &pub_adaptor, sec_adaptor));
CHECK(secp256k1_musig_pubkey_combine(ctx, scratch, &combined_pk_a, pk_hash_a, pk_a, 2));
CHECK(secp256k1_musig_pubkey_combine(ctx, scratch, &combined_pk_b, pk_hash_b, pk_b, 2));
CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_a[0], data_a, noncommit_a[0], seed, msg32_a, &combined_pk_a, pk_hash_a, 2, 0, seckey_a[0]));
CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_a[1], data_a, noncommit_a[1], seed, msg32_a, &combined_pk_a, pk_hash_a, 2, 1, seckey_a[1]));
noncommit_a_ptr[0] = noncommit_a[0];
noncommit_a_ptr[1] = noncommit_a[1];
CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_b[0], data_b, noncommit_b[0], seed, msg32_b, &combined_pk_b, pk_hash_b, 2, 0, seckey_b[0]));
CHECK(secp256k1_musig_session_initialize(ctx, &musig_session_b[1], data_b, noncommit_b[1], seed, msg32_b, &combined_pk_b, pk_hash_b, 2, 1, seckey_b[1]));
noncommit_b_ptr[0] = noncommit_b[0];
noncommit_b_ptr[1] = noncommit_b[1];
/* Step 2: Exchange nonces */
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_a[0], data_a, &pubnon_a[0], noncommit_a_ptr, 2));
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_a[1], data_a, &pubnon_a[1], noncommit_a_ptr, 2));
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_b[0], data_b, &pubnon_b[0], noncommit_b_ptr, 2));
CHECK(secp256k1_musig_session_get_public_nonce(ctx, &musig_session_b[1], data_b, &pubnon_b[1], noncommit_b_ptr, 2));
CHECK(secp256k1_musig_set_nonce(ctx, &data_a[0], &pubnon_a[0]));
CHECK(secp256k1_musig_set_nonce(ctx, &data_a[1], &pubnon_a[1]));
CHECK(secp256k1_musig_set_nonce(ctx, &data_b[0], &pubnon_b[0]));
CHECK(secp256k1_musig_set_nonce(ctx, &data_b[1], &pubnon_b[1]));
CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_a[0], data_a, 2, &nonce_is_negated_a, &pub_adaptor));
CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_a[1], data_a, 2, NULL, &pub_adaptor));
CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_b[0], data_b, 2, &nonce_is_negated_b, &pub_adaptor));
CHECK(secp256k1_musig_session_combine_nonces(ctx, &musig_session_b[1], data_b, 2, NULL, &pub_adaptor));
/* Step 3: Signer 0 produces partial signatures for both chains. */
CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_a[0], &partial_sig_a[0]));
CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_b[0], &partial_sig_b[0]));
/* Step 4: Signer 1 receives partial signatures, verifies them and creates a
* partial signature to send B-coins to signer 0. */
CHECK(secp256k1_musig_partial_sig_verify(ctx, &musig_session_a[1], data_a, &partial_sig_a[0], &pk_a[0]) == 1);
CHECK(secp256k1_musig_partial_sig_verify(ctx, &musig_session_b[1], data_b, &partial_sig_b[0], &pk_b[0]) == 1);
CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_b[1], &partial_sig_b[1]));
/* Step 5: Signer 0 adapts its own partial signature and combines it with the
* partial signature from signer 1. This results in a complete signature which
* is broadcasted by signer 0 to take B-coins. */
CHECK(secp256k1_musig_partial_sig_adapt(ctx, &partial_sig_b_adapted[0], &partial_sig_b[0], sec_adaptor, nonce_is_negated_b));
memcpy(&partial_sig_b_adapted[1], &partial_sig_b[1], sizeof(partial_sig_b_adapted[1]));
CHECK(secp256k1_musig_partial_sig_combine(ctx, &musig_session_b[0], &final_sig_b, partial_sig_b_adapted, 2) == 1);
CHECK(secp256k1_schnorrsig_verify(ctx, &final_sig_b, msg32_b, &combined_pk_b) == 1);
/* Step 6: Signer 1 extracts adaptor from the published signature, applies it to
* other partial signature, and takes A-coins. */
CHECK(secp256k1_musig_extract_secret_adaptor(ctx, sec_adaptor_extracted, &final_sig_b, partial_sig_b, 2, nonce_is_negated_b) == 1);
CHECK(memcmp(sec_adaptor_extracted, sec_adaptor, sizeof(sec_adaptor)) == 0); /* in real life we couldn't check this, of course */
CHECK(secp256k1_musig_partial_sig_adapt(ctx, &partial_sig_a[0], &partial_sig_a[0], sec_adaptor_extracted, nonce_is_negated_a));
CHECK(secp256k1_musig_partial_sign(ctx, &musig_session_a[1], &partial_sig_a[1]));
CHECK(secp256k1_musig_partial_sig_combine(ctx, &musig_session_a[1], &final_sig_a, partial_sig_a, 2) == 1);
CHECK(secp256k1_schnorrsig_verify(ctx, &final_sig_a, msg32_a, &combined_pk_a) == 1);
}
/* Checks that hash initialized by secp256k1_musig_sha256_init_tagged has the
* expected state. */
void sha256_tag_test(void) {
char tag[17] = "MuSig coefficient";
secp256k1_sha256 sha;
secp256k1_sha256 sha_tagged;
unsigned char buf[32];
unsigned char buf2[32];
size_t i;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, (unsigned char *) tag, 17);
secp256k1_sha256_finalize(&sha, buf);
/* buf = SHA256("MuSig coefficient") */
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, buf, 32);
secp256k1_sha256_write(&sha, buf, 32);
/* Is buffer fully consumed? */
CHECK((sha.bytes & 0x3F) == 0);
/* Compare with tagged SHA */
secp256k1_musig_sha256_init_tagged(&sha_tagged);
for (i = 0; i < 8; i++) {
CHECK(sha_tagged.s[i] == sha.s[i]);
}
secp256k1_sha256_write(&sha, buf, 32);
secp256k1_sha256_write(&sha_tagged, buf, 32);
secp256k1_sha256_finalize(&sha, buf);
secp256k1_sha256_finalize(&sha_tagged, buf2);
CHECK(memcmp(buf, buf2, 32) == 0);
}
void run_musig_tests(void) {
int i;
secp256k1_scratch_space *scratch = secp256k1_scratch_space_create(ctx, 1024 * 1024);
musig_api_tests(scratch);
musig_state_machine_tests(scratch);
for (i = 0; i < count; i++) {
/* Run multiple times to ensure that the nonce is negated in some tests */
scriptless_atomic_swap(scratch);
}
sha256_tag_test();
secp256k1_scratch_space_destroy(scratch);
}
#endif

9
src/secp256k1/src/modules/schnorrsig/Makefile.am.include

@ -0,0 +1,9 @@
include_HEADERS += include/secp256k1_schnorrsig.h
noinst_HEADERS += src/modules/schnorrsig/main_impl.h
noinst_HEADERS += src/modules/schnorrsig/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_schnorrsig
bench_schnorrsig_SOURCES = src/bench_schnorrsig.c
bench_schnorrsig_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

339
src/secp256k1/src/modules/schnorrsig/main_impl.h

@ -0,0 +1,339 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_SCHNORRSIG_MAIN_
#define _SECP256K1_MODULE_SCHNORRSIG_MAIN_
#include "include/secp256k1.h"
#include "include/secp256k1_schnorrsig.h"
#include "hash.h"
int secp256k1_schnorrsig_serialize(const secp256k1_context* ctx, unsigned char *out64, const secp256k1_schnorrsig* sig) {
(void) ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(out64 != NULL);
ARG_CHECK(sig != NULL);
memcpy(out64, sig->data, 64);
return 1;
}
int secp256k1_schnorrsig_parse(const secp256k1_context* ctx, secp256k1_schnorrsig* sig, const unsigned char *in64) {
(void) ctx;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(sig != NULL);
ARG_CHECK(in64 != NULL);
memcpy(sig->data, in64, 64);
return 1;
}
int secp256k1_schnorrsig_sign(const secp256k1_context* ctx, secp256k1_schnorrsig *sig, int *nonce_is_negated, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, void *ndata) {
secp256k1_scalar x;
secp256k1_scalar e;
secp256k1_scalar k;
secp256k1_gej pkj;
secp256k1_gej rj;
secp256k1_ge pk;
secp256k1_ge r;
secp256k1_sha256 sha;
int overflow;
unsigned char buf[33];
size_t buflen = sizeof(buf);
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(sig != NULL);
ARG_CHECK(msg32 != NULL);
ARG_CHECK(seckey != NULL);
if (noncefp == NULL) {
noncefp = secp256k1_nonce_function_bipschnorr;
}
secp256k1_scalar_set_b32(&x, seckey, &overflow);
/* Fail if the secret key is invalid. */
if (overflow || secp256k1_scalar_is_zero(&x)) {
memset(sig, 0, sizeof(*sig));
return 0;
}
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pkj, &x);
secp256k1_ge_set_gej(&pk, &pkj);
if (!noncefp(buf, msg32, seckey, NULL, (void*)ndata, 0)) {
return 0;
}
secp256k1_scalar_set_b32(&k, buf, NULL);
if (secp256k1_scalar_is_zero(&k)) {
return 0;
}
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &rj, &k);
secp256k1_ge_set_gej(&r, &rj);
if (nonce_is_negated != NULL) {
*nonce_is_negated = 0;
}
if (!secp256k1_fe_is_quad_var(&r.y)) {
secp256k1_scalar_negate(&k, &k);
if (nonce_is_negated != NULL) {
*nonce_is_negated = 1;
}
}
secp256k1_fe_normalize(&r.x);
secp256k1_fe_get_b32(&sig->data[0], &r.x);
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, &sig->data[0], 32);
secp256k1_eckey_pubkey_serialize(&pk, buf, &buflen, 1);
secp256k1_sha256_write(&sha, buf, buflen);
secp256k1_sha256_write(&sha, msg32, 32);
secp256k1_sha256_finalize(&sha, buf);
secp256k1_scalar_set_b32(&e, buf, NULL);
secp256k1_scalar_mul(&e, &e, &x);
secp256k1_scalar_add(&e, &e, &k);
secp256k1_scalar_get_b32(&sig->data[32], &e);
secp256k1_scalar_clear(&k);
secp256k1_scalar_clear(&x);
return 1;
}
/* Helper function for verification and batch verification.
* Computes R = sG - eP. */
static int secp256k1_schnorrsig_real_verify(const secp256k1_context* ctx, secp256k1_gej *rj, const secp256k1_scalar *s, const secp256k1_scalar *e, const secp256k1_pubkey *pk) {
secp256k1_scalar nege;
secp256k1_ge pkp;
secp256k1_gej pkj;
secp256k1_scalar_negate(&nege, e);
if (!secp256k1_pubkey_load(ctx, &pkp, pk)) {
return 0;
}
secp256k1_gej_set_ge(&pkj, &pkp);
/* rj = s*G + (-e)*pkj */
secp256k1_ecmult(&ctx->ecmult_ctx, rj, &pkj, &nege, s);
return 1;
}
int secp256k1_schnorrsig_verify(const secp256k1_context* ctx, const secp256k1_schnorrsig *sig, const unsigned char *msg32, const secp256k1_pubkey *pk) {
secp256k1_scalar s;
secp256k1_scalar e;
secp256k1_gej rj;
secp256k1_fe rx;
secp256k1_sha256 sha;
unsigned char buf[33];
size_t buflen = sizeof(buf);
int overflow;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(sig != NULL);
ARG_CHECK(msg32 != NULL);
ARG_CHECK(pk != NULL);
if (!secp256k1_fe_set_b32(&rx, &sig->data[0])) {
return 0;
}
secp256k1_scalar_set_b32(&s, &sig->data[32], &overflow);
if (overflow) {
return 0;
}
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, &sig->data[0], 32);
secp256k1_ec_pubkey_serialize(ctx, buf, &buflen, pk, SECP256K1_EC_COMPRESSED);
secp256k1_sha256_write(&sha, buf, buflen);
secp256k1_sha256_write(&sha, msg32, 32);
secp256k1_sha256_finalize(&sha, buf);
secp256k1_scalar_set_b32(&e, buf, NULL);
if (!secp256k1_schnorrsig_real_verify(ctx, &rj, &s, &e, pk)
|| !secp256k1_gej_has_quad_y_var(&rj) /* fails if rj is infinity */
|| !secp256k1_gej_eq_x_var(&rx, &rj)) {
return 0;
}
return 1;
}
/* Data that is used by the batch verification ecmult callback */
typedef struct {
const secp256k1_context *ctx;
/* Seed for the random number generator */
unsigned char chacha_seed[32];
/* Caches randomizers generated by the PRNG which returns two randomizers per call. Caching
* avoids having to call the PRNG twice as often. The very first randomizer will be set to 1 and
* the PRNG is called at every odd indexed schnorrsig to fill the cache. */
secp256k1_scalar randomizer_cache[2];
/* Signature, message, public key tuples to verify */
const secp256k1_schnorrsig *const *sig;
const unsigned char *const *msg32;
const secp256k1_pubkey *const *pk;
size_t n_sigs;
} secp256k1_schnorrsig_verify_ecmult_context;
/* Callback function which is called by ecmult_multi in order to convert the ecmult_context
* consisting of signature, message and public key tuples into scalars and points. */
static int secp256k1_schnorrsig_verify_batch_ecmult_callback(secp256k1_scalar *sc, secp256k1_ge *pt, size_t idx, void *data) {
secp256k1_schnorrsig_verify_ecmult_context *ecmult_context = (secp256k1_schnorrsig_verify_ecmult_context *) data;
if (idx % 4 == 2) {
/* Every idx corresponds to a (scalar,point)-tuple. So this callback is called with 4
* consecutive tuples before we need to call the RNG for new randomizers:
* (-randomizer_cache[0], R1)
* (-randomizer_cache[0]*e1, P1)
* (-randomizer_cache[1], R2)
* (-randomizer_cache[1]*e2, P2) */
secp256k1_scalar_chacha20(&ecmult_context->randomizer_cache[0], &ecmult_context->randomizer_cache[1], ecmult_context->chacha_seed, idx / 4);
}
/* R */
if (idx % 2 == 0) {
secp256k1_fe rx;
*sc = ecmult_context->randomizer_cache[(idx / 2) % 2];
if (!secp256k1_fe_set_b32(&rx, &ecmult_context->sig[idx / 2]->data[0])) {
return 0;
}
if (!secp256k1_ge_set_xquad(pt, &rx)) {
return 0;
}
/* eP */
} else {
unsigned char buf[33];
size_t buflen = sizeof(buf);
secp256k1_sha256 sha;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, &ecmult_context->sig[idx / 2]->data[0], 32);
secp256k1_ec_pubkey_serialize(ecmult_context->ctx, buf, &buflen, ecmult_context->pk[idx / 2], SECP256K1_EC_COMPRESSED);
secp256k1_sha256_write(&sha, buf, buflen);
secp256k1_sha256_write(&sha, ecmult_context->msg32[idx / 2], 32);
secp256k1_sha256_finalize(&sha, buf);
secp256k1_scalar_set_b32(sc, buf, NULL);
secp256k1_scalar_mul(sc, sc, &ecmult_context->randomizer_cache[(idx / 2) % 2]);
if (!secp256k1_pubkey_load(ecmult_context->ctx, pt, ecmult_context->pk[idx / 2])) {
return 0;
}
}
return 1;
}
/** Helper function for batch verification. Hashes signature verification data into the
* randomization seed and initializes ecmult_context.
*
* Returns 1 if the randomizer was successfully initialized.
*
* Args: ctx: a secp256k1 context object
* Out: ecmult_context: context for batch_ecmult_callback
* In/Out sha: an initialized sha256 object which hashes the schnorrsig input in order to get a
* seed for the randomizer PRNG
* In: sig: array of signatures, or NULL if there are no signatures
* msg32: array of messages, or NULL if there are no signatures
* pk: array of public keys, or NULL if there are no signatures
* n_sigs: number of signatures in above arrays (must be 0 if they are NULL)
*/
int secp256k1_schnorrsig_verify_batch_init_randomizer(const secp256k1_context *ctx, secp256k1_schnorrsig_verify_ecmult_context *ecmult_context, secp256k1_sha256 *sha, const secp256k1_schnorrsig *const *sig, const unsigned char *const *msg32, const secp256k1_pubkey *const *pk, size_t n_sigs) {
size_t i;
if (n_sigs > 0) {
ARG_CHECK(sig != NULL);
ARG_CHECK(msg32 != NULL);
ARG_CHECK(pk != NULL);
}
for (i = 0; i < n_sigs; i++) {
unsigned char buf[33];
size_t buflen = sizeof(buf);
secp256k1_sha256_write(sha, sig[i]->data, 64);
secp256k1_sha256_write(sha, msg32[i], 32);
secp256k1_ec_pubkey_serialize(ctx, buf, &buflen, pk[i], SECP256K1_EC_COMPRESSED);
secp256k1_sha256_write(sha, buf, 32);
}
ecmult_context->ctx = ctx;
ecmult_context->sig = sig;
ecmult_context->msg32 = msg32;
ecmult_context->pk = pk;
ecmult_context->n_sigs = n_sigs;
return 1;
}
/** Helper function for batch verification. Sums the s part of all signatures multiplied by their
* randomizer.
*
* Returns 1 if s is successfully summed.
*
* In/Out: s: the s part of the input sigs is added to this s argument
* In: chacha_seed: PRNG seed for computing randomizers
* sig: array of signatures, or NULL if there are no signatures
* n_sigs: number of signatures in above array (must be 0 if they are NULL)
*/
int secp256k1_schnorrsig_verify_batch_sum_s(secp256k1_scalar *s, unsigned char *chacha_seed, const secp256k1_schnorrsig *const *sig, size_t n_sigs) {
secp256k1_scalar randomizer_cache[2];
size_t i;
secp256k1_scalar_set_int(&randomizer_cache[0], 1);
for (i = 0; i < n_sigs; i++) {
int overflow;
secp256k1_scalar term;
if (i % 2 == 1) {
secp256k1_scalar_chacha20(&randomizer_cache[0], &randomizer_cache[1], chacha_seed, i / 2);
}
secp256k1_scalar_set_b32(&term, &sig[i]->data[32], &overflow);
if (overflow) {
return 0;
}
secp256k1_scalar_mul(&term, &term, &randomizer_cache[i % 2]);
secp256k1_scalar_add(s, s, &term);
}
return 1;
}
/* schnorrsig batch verification.
* Seeds a random number generator with the inputs and derives a random number ai for every
* signature i. Fails if y-coordinate of any R is not a quadratic residue or if
* 0 != -(s1 + a2*s2 + ... + au*su)G + R1 + a2*R2 + ... + au*Ru + e1*P1 + (a2*e2)P2 + ... + (au*eu)Pu. */
int secp256k1_schnorrsig_verify_batch(const secp256k1_context *ctx, secp256k1_scratch *scratch, const secp256k1_schnorrsig *const *sig, const unsigned char *const *msg32, const secp256k1_pubkey *const *pk, size_t n_sigs) {
secp256k1_schnorrsig_verify_ecmult_context ecmult_context;
secp256k1_sha256 sha;
secp256k1_scalar s;
secp256k1_gej rj;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(scratch != NULL);
/* Check that n_sigs is less than half of the maximum size_t value. This is necessary because
* the number of points given to ecmult_multi is 2*n_sigs. */
ARG_CHECK(n_sigs <= SIZE_MAX / 2);
/* Check that n_sigs is less than 2^31 to ensure the same behavior of this function on 32-bit
* and 64-bit platforms. */
ARG_CHECK(n_sigs < (size_t)(1 << 31));
secp256k1_sha256_initialize(&sha);
if (!secp256k1_schnorrsig_verify_batch_init_randomizer(ctx, &ecmult_context, &sha, sig, msg32, pk, n_sigs)) {
return 0;
}
secp256k1_sha256_finalize(&sha, ecmult_context.chacha_seed);
secp256k1_scalar_set_int(&ecmult_context.randomizer_cache[0], 1);
secp256k1_scalar_clear(&s);
if (!secp256k1_schnorrsig_verify_batch_sum_s(&s, ecmult_context.chacha_seed, sig, n_sigs)) {
return 0;
}
secp256k1_scalar_negate(&s, &s);
return secp256k1_ecmult_multi_var(&ctx->ecmult_ctx, scratch, &rj, &s, secp256k1_schnorrsig_verify_batch_ecmult_callback, (void *) &ecmult_context, 2 * n_sigs)
&& secp256k1_gej_is_infinity(&rj);
}
#endif

727
src/secp256k1/src/modules/schnorrsig/tests_impl.h

@ -0,0 +1,727 @@
/**********************************************************************
* Copyright (c) 2018 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_
#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_
#include "secp256k1_schnorrsig.h"
void test_schnorrsig_serialize(void) {
secp256k1_schnorrsig sig;
unsigned char in[64];
unsigned char out[64];
memset(in, 0x12, 64);
CHECK(secp256k1_schnorrsig_parse(ctx, &sig, in));
CHECK(secp256k1_schnorrsig_serialize(ctx, out, &sig));
CHECK(memcmp(in, out, 64) == 0);
}
void test_schnorrsig_api(secp256k1_scratch_space *scratch) {
unsigned char sk1[32];
unsigned char sk2[32];
unsigned char sk3[32];
unsigned char msg[32];
unsigned char sig64[64];
secp256k1_pubkey pk[3];
secp256k1_schnorrsig sig;
const secp256k1_schnorrsig *sigptr = &sig;
const unsigned char *msgptr = msg;
const secp256k1_pubkey *pkptr = &pk[0];
int nonce_is_negated;
/** setup **/
secp256k1_context *none = secp256k1_context_create(SECP256K1_CONTEXT_NONE);
secp256k1_context *sign = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
secp256k1_context *vrfy = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
secp256k1_context *both = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
int ecount;
secp256k1_context_set_error_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_error_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(none, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(sign, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(vrfy, counting_illegal_callback_fn, &ecount);
secp256k1_context_set_illegal_callback(both, counting_illegal_callback_fn, &ecount);
secp256k1_rand256(sk1);
secp256k1_rand256(sk2);
secp256k1_rand256(sk3);
secp256k1_rand256(msg);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk1) == 1);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[1], sk2) == 1);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[2], sk3) == 1);
/** main test body **/
ecount = 0;
CHECK(secp256k1_schnorrsig_sign(none, &sig, &nonce_is_negated, msg, sk1, NULL, NULL) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_sign(vrfy, &sig, &nonce_is_negated, msg, sk1, NULL, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_sign(sign, &sig, &nonce_is_negated, msg, sk1, NULL, NULL) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_sign(sign, NULL, &nonce_is_negated, msg, sk1, NULL, NULL) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_sign(sign, &sig, NULL, msg, sk1, NULL, NULL) == 1);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_sign(sign, &sig, &nonce_is_negated, NULL, sk1, NULL, NULL) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_sign(sign, &sig, &nonce_is_negated, msg, NULL, NULL, NULL) == 0);
CHECK(ecount == 5);
ecount = 0;
CHECK(secp256k1_schnorrsig_serialize(none, sig64, &sig) == 1);
CHECK(ecount == 0);
CHECK(secp256k1_schnorrsig_serialize(none, NULL, &sig) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_serialize(none, sig64, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_parse(none, &sig, sig64) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_parse(none, NULL, sig64) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_parse(none, &sig, NULL) == 0);
CHECK(ecount == 4);
ecount = 0;
CHECK(secp256k1_schnorrsig_verify(none, &sig, msg, &pk[0]) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_verify(sign, &sig, msg, &pk[0]) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify(vrfy, &sig, msg, &pk[0]) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify(vrfy, NULL, msg, &pk[0]) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_verify(vrfy, &sig, NULL, &pk[0]) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_verify(vrfy, &sig, msg, NULL) == 0);
CHECK(ecount == 5);
ecount = 0;
CHECK(secp256k1_schnorrsig_verify_batch(none, scratch, &sigptr, &msgptr, &pkptr, 1) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_schnorrsig_verify_batch(sign, scratch, &sigptr, &msgptr, &pkptr, 1) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, &pkptr, 1) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, NULL, NULL, NULL, 0) == 1);
CHECK(ecount == 2);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, NULL, &msgptr, &pkptr, 1) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, NULL, &pkptr, 1) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, NULL, 1) == 0);
CHECK(ecount == 5);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, &pkptr, (size_t)1 << (sizeof(size_t)*8-1)) == 0);
CHECK(ecount == 6);
CHECK(secp256k1_schnorrsig_verify_batch(vrfy, scratch, &sigptr, &msgptr, &pkptr, 1 << 31) == 0);
CHECK(ecount == 7);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(vrfy);
secp256k1_context_destroy(both);
}
/* Helper function for schnorrsig_bip_vectors
* Signs the message and checks that it's the same as expected_sig. */
void test_schnorrsig_bip_vectors_check_signing(const unsigned char *sk, const unsigned char *pk_serialized, const unsigned char *msg, const unsigned char *expected_sig, const int expected_nonce_is_negated) {
secp256k1_schnorrsig sig;
unsigned char serialized_sig[64];
secp256k1_pubkey pk;
int nonce_is_negated;
CHECK(secp256k1_schnorrsig_sign(ctx, &sig, &nonce_is_negated, msg, sk, NULL, NULL));
CHECK(nonce_is_negated == expected_nonce_is_negated);
CHECK(secp256k1_schnorrsig_serialize(ctx, serialized_sig, &sig));
CHECK(memcmp(serialized_sig, expected_sig, 64) == 0);
CHECK(secp256k1_ec_pubkey_parse(ctx, &pk, pk_serialized, 33));
CHECK(secp256k1_schnorrsig_verify(ctx, &sig, msg, &pk));
}
/* Helper function for schnorrsig_bip_vectors
* Checks that both verify and verify_batch return the same value as expected. */
void test_schnorrsig_bip_vectors_check_verify(secp256k1_scratch_space *scratch, const unsigned char *pk_serialized, const unsigned char *msg32, const unsigned char *sig_serialized, int expected) {
const unsigned char *msg_arr[1];
const secp256k1_schnorrsig *sig_arr[1];
const secp256k1_pubkey *pk_arr[1];
secp256k1_pubkey pk;
secp256k1_schnorrsig sig;
CHECK(secp256k1_ec_pubkey_parse(ctx, &pk, pk_serialized, 33));
CHECK(secp256k1_schnorrsig_parse(ctx, &sig, sig_serialized));
sig_arr[0] = &sig;
msg_arr[0] = msg32;
pk_arr[0] = &pk;
CHECK(expected == secp256k1_schnorrsig_verify(ctx, &sig, msg32, &pk));
CHECK(expected == secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 1));
}
/* Test vectors according to BIP-schnorr
* (https://github.com/sipa/bips/blob/7f6a73e53c8bbcf2d008ea0546f76433e22094a8/bip-schnorr/test-vectors.csv).
*/
void test_schnorrsig_bip_vectors(secp256k1_scratch_space *scratch) {
{
/* Test vector 1 */
const unsigned char sk1[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
};
const unsigned char pk1[33] = {
0x02, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB,
0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B,
0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28,
0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17,
0x98
};
const unsigned char msg1[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char sig1[64] = {
0x78, 0x7A, 0x84, 0x8E, 0x71, 0x04, 0x3D, 0x28,
0x0C, 0x50, 0x47, 0x0E, 0x8E, 0x15, 0x32, 0xB2,
0xDD, 0x5D, 0x20, 0xEE, 0x91, 0x2A, 0x45, 0xDB,
0xDD, 0x2B, 0xD1, 0xDF, 0xBF, 0x18, 0x7E, 0xF6,
0x70, 0x31, 0xA9, 0x88, 0x31, 0x85, 0x9D, 0xC3,
0x4D, 0xFF, 0xEE, 0xDD, 0xA8, 0x68, 0x31, 0x84,
0x2C, 0xCD, 0x00, 0x79, 0xE1, 0xF9, 0x2A, 0xF1,
0x77, 0xF7, 0xF2, 0x2C, 0xC1, 0xDC, 0xED, 0x05
};
test_schnorrsig_bip_vectors_check_signing(sk1, pk1, msg1, sig1, 1);
test_schnorrsig_bip_vectors_check_verify(scratch, pk1, msg1, sig1, 1);
}
{
/* Test vector 2 */
const unsigned char sk2[32] = {
0xB7, 0xE1, 0x51, 0x62, 0x8A, 0xED, 0x2A, 0x6A,
0xBF, 0x71, 0x58, 0x80, 0x9C, 0xF4, 0xF3, 0xC7,
0x62, 0xE7, 0x16, 0x0F, 0x38, 0xB4, 0xDA, 0x56,
0xA7, 0x84, 0xD9, 0x04, 0x51, 0x90, 0xCF, 0xEF
};
const unsigned char pk2[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg2[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig2[64] = {
0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99,
0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36,
0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34,
0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD
};
test_schnorrsig_bip_vectors_check_signing(sk2, pk2, msg2, sig2, 0);
test_schnorrsig_bip_vectors_check_verify(scratch, pk2, msg2, sig2, 1);
}
{
/* Test vector 3 */
const unsigned char sk3[32] = {
0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1,
0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x14, 0xE5, 0xC7
};
const unsigned char pk3[33] = {
0x03, 0xFA, 0xC2, 0x11, 0x4C, 0x2F, 0xBB, 0x09,
0x15, 0x27, 0xEB, 0x7C, 0x64, 0xEC, 0xB1, 0x1F,
0x80, 0x21, 0xCB, 0x45, 0xE8, 0xE7, 0x80, 0x9D,
0x3C, 0x09, 0x38, 0xE4, 0xB8, 0xC0, 0xE5, 0xF8,
0x4B
};
const unsigned char msg3[32] = {
0x5E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A,
0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D,
0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33,
0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C
};
const unsigned char sig3[64] = {
0x00, 0xDA, 0x9B, 0x08, 0x17, 0x2A, 0x9B, 0x6F,
0x04, 0x66, 0xA2, 0xDE, 0xFD, 0x81, 0x7F, 0x2D,
0x7A, 0xB4, 0x37, 0xE0, 0xD2, 0x53, 0xCB, 0x53,
0x95, 0xA9, 0x63, 0x86, 0x6B, 0x35, 0x74, 0xBE,
0x00, 0x88, 0x03, 0x71, 0xD0, 0x17, 0x66, 0x93,
0x5B, 0x92, 0xD2, 0xAB, 0x4C, 0xD5, 0xC8, 0xA2,
0xA5, 0x83, 0x7E, 0xC5, 0x7F, 0xED, 0x76, 0x60,
0x77, 0x3A, 0x05, 0xF0, 0xDE, 0x14, 0x23, 0x80
};
test_schnorrsig_bip_vectors_check_signing(sk3, pk3, msg3, sig3, 0);
test_schnorrsig_bip_vectors_check_verify(scratch, pk3, msg3, sig3, 1);
}
{
/* Test vector 4 */
const unsigned char pk4[33] = {
0x03, 0xDE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77,
0x50, 0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF,
0x21, 0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76,
0x87, 0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A,
0x34
};
const unsigned char msg4[32] = {
0x4D, 0xF3, 0xC3, 0xF6, 0x8F, 0xCC, 0x83, 0xB2,
0x7E, 0x9D, 0x42, 0xC9, 0x04, 0x31, 0xA7, 0x24,
0x99, 0xF1, 0x78, 0x75, 0xC8, 0x1A, 0x59, 0x9B,
0x56, 0x6C, 0x98, 0x89, 0xB9, 0x69, 0x67, 0x03
};
const unsigned char sig4[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x3B, 0x78, 0xCE, 0x56, 0x3F,
0x89, 0xA0, 0xED, 0x94, 0x14, 0xF5, 0xAA, 0x28,
0xAD, 0x0D, 0x96, 0xD6, 0x79, 0x5F, 0x9C, 0x63,
0x02, 0xA8, 0xDC, 0x32, 0xE6, 0x4E, 0x86, 0xA3,
0x33, 0xF2, 0x0E, 0xF5, 0x6E, 0xAC, 0x9B, 0xA3,
0x0B, 0x72, 0x46, 0xD6, 0xD2, 0x5E, 0x22, 0xAD,
0xB8, 0xC6, 0xBE, 0x1A, 0xEB, 0x08, 0xD4, 0x9D
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk4, msg4, sig4, 1);
}
{
/* Test vector 5 */
const unsigned char pk5[33] = {
0x03, 0x1B, 0x84, 0xC5, 0x56, 0x7B, 0x12, 0x64,
0x40, 0x99, 0x5D, 0x3E, 0xD5, 0xAA, 0xBA, 0x05,
0x65, 0xD7, 0x1E, 0x18, 0x34, 0x60, 0x48, 0x19,
0xFF, 0x9C, 0x17, 0xF5, 0xE9, 0xD5, 0xDD, 0x07,
0x8F
};
const unsigned char msg5[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char sig5[64] = {
0x52, 0x81, 0x85, 0x79, 0xAC, 0xA5, 0x97, 0x67,
0xE3, 0x29, 0x1D, 0x91, 0xB7, 0x6B, 0x63, 0x7B,
0xEF, 0x06, 0x20, 0x83, 0x28, 0x49, 0x92, 0xF2,
0xD9, 0x5F, 0x56, 0x4C, 0xA6, 0xCB, 0x4E, 0x35,
0x30, 0xB1, 0xDA, 0x84, 0x9C, 0x8E, 0x83, 0x04,
0xAD, 0xC0, 0xCF, 0xE8, 0x70, 0x66, 0x03, 0x34,
0xB3, 0xCF, 0xC1, 0x8E, 0x82, 0x5E, 0xF1, 0xDB,
0x34, 0xCF, 0xAE, 0x3D, 0xFC, 0x5D, 0x81, 0x87
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk5, msg5, sig5, 1);
}
{
/* Test vector 6 */
const unsigned char pk6[33] = {
0x03, 0xFA, 0xC2, 0x11, 0x4C, 0x2F, 0xBB, 0x09,
0x15, 0x27, 0xEB, 0x7C, 0x64, 0xEC, 0xB1, 0x1F,
0x80, 0x21, 0xCB, 0x45, 0xE8, 0xE7, 0x80, 0x9D,
0x3C, 0x09, 0x38, 0xE4, 0xB8, 0xC0, 0xE5, 0xF8,
0x4B
};
const unsigned char msg6[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const unsigned char sig6[64] = {
0x57, 0x0D, 0xD4, 0xCA, 0x83, 0xD4, 0xE6, 0x31,
0x7B, 0x8E, 0xE6, 0xBA, 0xE8, 0x34, 0x67, 0xA1,
0xBF, 0x41, 0x9D, 0x07, 0x67, 0x12, 0x2D, 0xE4,
0x09, 0x39, 0x44, 0x14, 0xB0, 0x50, 0x80, 0xDC,
0xE9, 0xEE, 0x5F, 0x23, 0x7C, 0xBD, 0x10, 0x8E,
0xAB, 0xAE, 0x1E, 0x37, 0x75, 0x9A, 0xE4, 0x7F,
0x8E, 0x42, 0x03, 0xDA, 0x35, 0x32, 0xEB, 0x28,
0xDB, 0x86, 0x0F, 0x33, 0xD6, 0x2D, 0x49, 0xBD
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk6, msg6, sig6, 1);
}
{
/* Test vector 7 */
const unsigned char pk7[33] = {
0x03, 0xEE, 0xFD, 0xEA, 0x4C, 0xDB, 0x67, 0x77,
0x50, 0xA4, 0x20, 0xFE, 0xE8, 0x07, 0xEA, 0xCF,
0x21, 0xEB, 0x98, 0x98, 0xAE, 0x79, 0xB9, 0x76,
0x87, 0x66, 0xE4, 0xFA, 0xA0, 0x4A, 0x2D, 0x4A,
0x34
};
secp256k1_pubkey pk7_parsed;
/* No need to check the signature of the test vector as parsing the pubkey already fails */
CHECK(!secp256k1_ec_pubkey_parse(ctx, &pk7_parsed, pk7, 33));
}
{
/* Test vector 8 */
const unsigned char pk8[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg8[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig8[64] = {
0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
0xFA, 0x16, 0xAE, 0xE0, 0x66, 0x09, 0x28, 0x0A,
0x19, 0xB6, 0x7A, 0x24, 0xE1, 0x97, 0x7E, 0x46,
0x97, 0x71, 0x2B, 0x5F, 0xD2, 0x94, 0x39, 0x14,
0xEC, 0xD5, 0xF7, 0x30, 0x90, 0x1B, 0x4A, 0xB7
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk8, msg8, sig8, 0);
}
{
/* Test vector 9 */
const unsigned char pk9[33] = {
0x03, 0xFA, 0xC2, 0x11, 0x4C, 0x2F, 0xBB, 0x09,
0x15, 0x27, 0xEB, 0x7C, 0x64, 0xEC, 0xB1, 0x1F,
0x80, 0x21, 0xCB, 0x45, 0xE8, 0xE7, 0x80, 0x9D,
0x3C, 0x09, 0x38, 0xE4, 0xB8, 0xC0, 0xE5, 0xF8,
0x4B
};
const unsigned char msg9[32] = {
0x5E, 0x2D, 0x58, 0xD8, 0xB3, 0xBC, 0xDF, 0x1A,
0xBA, 0xDE, 0xC7, 0x82, 0x90, 0x54, 0xF9, 0x0D,
0xDA, 0x98, 0x05, 0xAA, 0xB5, 0x6C, 0x77, 0x33,
0x30, 0x24, 0xB9, 0xD0, 0xA5, 0x08, 0xB7, 0x5C
};
const unsigned char sig9[64] = {
0x00, 0xDA, 0x9B, 0x08, 0x17, 0x2A, 0x9B, 0x6F,
0x04, 0x66, 0xA2, 0xDE, 0xFD, 0x81, 0x7F, 0x2D,
0x7A, 0xB4, 0x37, 0xE0, 0xD2, 0x53, 0xCB, 0x53,
0x95, 0xA9, 0x63, 0x86, 0x6B, 0x35, 0x74, 0xBE,
0xD0, 0x92, 0xF9, 0xD8, 0x60, 0xF1, 0x77, 0x6A,
0x1F, 0x74, 0x12, 0xAD, 0x8A, 0x1E, 0xB5, 0x0D,
0xAC, 0xCC, 0x22, 0x2B, 0xC8, 0xC0, 0xE2, 0x6B,
0x20, 0x56, 0xDF, 0x2F, 0x27, 0x3E, 0xFD, 0xEC
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk9, msg9, sig9, 0);
}
{
/* Test vector 10 */
const unsigned char pk10[33] = {
0x02, 0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB,
0xAC, 0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B,
0x07, 0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28,
0xD9, 0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17,
0x98
};
const unsigned char msg10[32] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const unsigned char sig10[64] = {
0x78, 0x7A, 0x84, 0x8E, 0x71, 0x04, 0x3D, 0x28,
0x0C, 0x50, 0x47, 0x0E, 0x8E, 0x15, 0x32, 0xB2,
0xDD, 0x5D, 0x20, 0xEE, 0x91, 0x2A, 0x45, 0xDB,
0xDD, 0x2B, 0xD1, 0xDF, 0xBF, 0x18, 0x7E, 0xF6,
0x8F, 0xCE, 0x56, 0x77, 0xCE, 0x7A, 0x62, 0x3C,
0xB2, 0x00, 0x11, 0x22, 0x57, 0x97, 0xCE, 0x7A,
0x8D, 0xE1, 0xDC, 0x6C, 0xCD, 0x4F, 0x75, 0x4A,
0x47, 0xDA, 0x6C, 0x60, 0x0E, 0x59, 0x54, 0x3C
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk10, msg10, sig10, 0);
}
{
/* Test vector 11 */
const unsigned char pk11[33] = {
0x03, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg11[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig11[64] = {
0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99,
0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36,
0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34,
0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk11, msg11, sig11, 0);
}
{
/* Test vector 12 */
const unsigned char pk12[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg12[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig12[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x9E, 0x9D, 0x01, 0xAF, 0x98, 0x8B, 0x5C, 0xED,
0xCE, 0x47, 0x22, 0x1B, 0xFA, 0x9B, 0x22, 0x27,
0x21, 0xF3, 0xFA, 0x40, 0x89, 0x15, 0x44, 0x4A,
0x4B, 0x48, 0x90, 0x21, 0xDB, 0x55, 0x77, 0x5F
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk12, msg12, sig12, 0);
}
{
/* Test vector 13 */
const unsigned char pk13[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg13[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig13[64] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xD3, 0x7D, 0xDF, 0x02, 0x54, 0x35, 0x18, 0x36,
0xD8, 0x4B, 0x1B, 0xD6, 0xA7, 0x95, 0xFD, 0x5D,
0x52, 0x30, 0x48, 0xF2, 0x98, 0xC4, 0x21, 0x4D,
0x18, 0x7F, 0xE4, 0x89, 0x29, 0x47, 0xF7, 0x28
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk13, msg13, sig13, 0);
}
{
/* Test vector 14 */
const unsigned char pk14[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg14[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x14, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig14[64] = {
0x4A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99,
0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36,
0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34,
0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk14, msg14, sig14, 0);
}
{
/* Test vector 15 */
const unsigned char pk15[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg15[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig15[64] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC, 0x2F,
0x1E, 0x51, 0xA2, 0x2C, 0xCE, 0xC3, 0x55, 0x99,
0xB8, 0xF2, 0x66, 0x91, 0x22, 0x81, 0xF8, 0x36,
0x5F, 0xFC, 0x2D, 0x03, 0x5A, 0x23, 0x04, 0x34,
0xA1, 0xA6, 0x4D, 0xC5, 0x9F, 0x70, 0x13, 0xFD
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk15, msg15, sig15, 0);
}
{
/* Test vector 16 */
const unsigned char pk16[33] = {
0x02, 0xDF, 0xF1, 0xD7, 0x7F, 0x2A, 0x67, 0x1C,
0x5F, 0x36, 0x18, 0x37, 0x26, 0xDB, 0x23, 0x41,
0xBE, 0x58, 0xFE, 0xAE, 0x1D, 0xA2, 0xDE, 0xCE,
0xD8, 0x43, 0x24, 0x0F, 0x7B, 0x50, 0x2B, 0xA6,
0x59
};
const unsigned char msg16[32] = {
0x24, 0x3F, 0x6A, 0x88, 0x85, 0xA3, 0x08, 0xD3,
0x13, 0x19, 0x8A, 0x2E, 0x03, 0x70, 0x73, 0x44,
0xA4, 0x09, 0x38, 0x22, 0x29, 0x9F, 0x31, 0xD0,
0x08, 0x2E, 0xFA, 0x98, 0xEC, 0x4E, 0x6C, 0x89
};
const unsigned char sig16[64] = {
0x2A, 0x29, 0x8D, 0xAC, 0xAE, 0x57, 0x39, 0x5A,
0x15, 0xD0, 0x79, 0x5D, 0xDB, 0xFD, 0x1D, 0xCB,
0x56, 0x4D, 0xA8, 0x2B, 0x0F, 0x26, 0x9B, 0xC7,
0x0A, 0x74, 0xF8, 0x22, 0x04, 0x29, 0xBA, 0x1D,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41
};
test_schnorrsig_bip_vectors_check_verify(scratch, pk16, msg16, sig16, 0);
}
}
/* Nonce function that returns constant 0 */
static int nonce_function_failing(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
(void) msg32;
(void) key32;
(void) algo16;
(void) data;
(void) counter;
(void) nonce32;
return 0;
}
/* Nonce function that sets nonce to 0 */
static int nonce_function_0(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
(void) msg32;
(void) key32;
(void) algo16;
(void) data;
(void) counter;
memset(nonce32, 0, 32);
return 1;
}
void test_schnorrsig_sign(void) {
unsigned char sk[32];
const unsigned char msg[32] = "this is a msg for a schnorrsig..";
secp256k1_schnorrsig sig;
memset(sk, 23, sizeof(sk));
CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, NULL, NULL) == 1);
/* Overflowing secret key */
memset(sk, 0xFF, sizeof(sk));
CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, NULL, NULL) == 0);
memset(sk, 23, sizeof(sk));
CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, nonce_function_failing, NULL) == 0);
CHECK(secp256k1_schnorrsig_sign(ctx, &sig, NULL, msg, sk, nonce_function_0, NULL) == 0);
}
#define N_SIGS 200
/* Creates N_SIGS valid signatures and verifies them with verify and verify_batch. Then flips some
* bits and checks that verification now fails. */
void test_schnorrsig_sign_verify(secp256k1_scratch_space *scratch) {
const unsigned char sk[32] = "shhhhhhhh! this key is a secret.";
unsigned char msg[N_SIGS][32];
secp256k1_schnorrsig sig[N_SIGS];
size_t i;
const secp256k1_schnorrsig *sig_arr[N_SIGS];
const unsigned char *msg_arr[N_SIGS];
const secp256k1_pubkey *pk_arr[N_SIGS];
secp256k1_pubkey pk;
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk));
CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, NULL, NULL, NULL, 0));
for (i = 0; i < N_SIGS; i++) {
secp256k1_rand256(msg[i]);
CHECK(secp256k1_schnorrsig_sign(ctx, &sig[i], NULL, msg[i], sk, NULL, NULL));
CHECK(secp256k1_schnorrsig_verify(ctx, &sig[i], msg[i], &pk));
sig_arr[i] = &sig[i];
msg_arr[i] = msg[i];
pk_arr[i] = &pk;
}
CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 1));
CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 2));
CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4));
CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, N_SIGS));
{
/* Flip a few bits in the signature and in the message and check that
* verify and verify_batch fail */
size_t sig_idx = secp256k1_rand_int(4);
size_t byte_idx = secp256k1_rand_int(32);
unsigned char xorbyte = secp256k1_rand_int(254)+1;
sig[sig_idx].data[byte_idx] ^= xorbyte;
CHECK(!secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk));
CHECK(!secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4));
sig[sig_idx].data[byte_idx] ^= xorbyte;
byte_idx = secp256k1_rand_int(32);
sig[sig_idx].data[32+byte_idx] ^= xorbyte;
CHECK(!secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk));
CHECK(!secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4));
sig[sig_idx].data[32+byte_idx] ^= xorbyte;
byte_idx = secp256k1_rand_int(32);
msg[sig_idx][byte_idx] ^= xorbyte;
CHECK(!secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk));
CHECK(!secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4));
msg[sig_idx][byte_idx] ^= xorbyte;
/* Check that above bitflips have been reversed correctly */
CHECK(secp256k1_schnorrsig_verify(ctx, &sig[sig_idx], msg[sig_idx], &pk));
CHECK(secp256k1_schnorrsig_verify_batch(ctx, scratch, sig_arr, msg_arr, pk_arr, 4));
}
}
#undef N_SIGS
void run_schnorrsig_tests(void) {
secp256k1_scratch_space *scratch = secp256k1_scratch_space_create(ctx, 1024 * 1024);
test_schnorrsig_serialize();
test_schnorrsig_api(scratch);
test_schnorrsig_bip_vectors(scratch);
test_schnorrsig_sign();
test_schnorrsig_sign_verify(scratch);
secp256k1_scratch_space_destroy(scratch);
}
#endif

235
src/secp256k1/src/scalar.h

@ -1,3 +1,230 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_H
#define SECP256K1_SCALAR_H
#include "num.h"
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low.h"
#elif defined(USE_SCALAR_4X64)
#include "scalar_4x64.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32.h"
#else
#error "Please select scalar implementation"
#endif
/** Clear a scalar to prevent the leak of sensitive data. */
static void secp256k1_scalar_clear(secp256k1_scalar *r);
/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Access bits from a scalar. Not constant time. */
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Set a scalar from a big endian byte array. */
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
/** Set a scalar to an unsigned integer. */
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
/** Convert a scalar to a byte array. */
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
/** Multiply two scalars (modulo the group order). */
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Shift a scalar right by some amount strictly between 0 and 16, returning
* the low bits that were shifted off */
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
/** Compute the square of a scalar (modulo the group order). */
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the inverse of a scalar (modulo the group order). */
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the complement of a scalar (modulo the group order). */
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Check whether a scalar equals zero. */
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
/** Check whether a scalar equals one. */
static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
/** Check whether a scalar, considered as an nonnegative integer, is even. */
static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
/** Check whether a scalar is higher than the group order divided by 2. */
static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
/** Conditionally negate a number, in constant time.
* Returns -1 if the number was negated, 1 otherwise */
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
#ifndef USE_NUM_NONE
/** Convert a scalar to a number. */
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
/** Get the order of the group as a number. */
static void secp256k1_scalar_order_get_num(secp256k1_num *r);
#endif
/** Compare two scalars. */
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
#ifdef USE_ENDOMORPHISM
/** Find r1 and r2 such that r1+r2*2^128 = a. */
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
#endif
/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
#endif /* SECP256K1_SCALAR_H */
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_H
#define SECP256K1_SCALAR_H
#include "num.h"
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low.h"
#elif defined(USE_SCALAR_4X64)
#include "scalar_4x64.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32.h"
#else
#error "Please select scalar implementation"
#endif
/** Clear a scalar to prevent the leak of sensitive data. */
static void secp256k1_scalar_clear(secp256k1_scalar *r);
/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Access bits from a scalar. Not constant time. */
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
/** Set a scalar from a big endian byte array. */
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *bin, int *overflow);
/** Set a scalar to an unsigned integer. */
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
/** Set a scalar to an unsigned 64-bit integer */
static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v);
/** Convert a scalar to a byte array. */
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
/** Add two scalars together (modulo the group order). Returns whether it overflowed. */
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Conditionally add a power of two to a scalar. The result is not allowed to overflow. */
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag);
/** Multiply two scalars (modulo the group order). */
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b);
/** Shift a scalar right by some amount strictly between 0 and 16, returning
* the low bits that were shifted off */
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n);
/** Compute the square of a scalar (modulo the group order). */
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the inverse of a scalar (modulo the group order). */
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the inverse of a scalar (modulo the group order), without constant-time guarantee. */
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Compute the complement of a scalar (modulo the group order). */
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a);
/** Check whether a scalar equals zero. */
static int secp256k1_scalar_is_zero(const secp256k1_scalar *a);
/** Check whether a scalar equals one. */
static int secp256k1_scalar_is_one(const secp256k1_scalar *a);
/** Check whether a scalar, considered as an nonnegative integer, is even. */
static int secp256k1_scalar_is_even(const secp256k1_scalar *a);
/** Check whether a scalar is higher than the group order divided by 2. */
static int secp256k1_scalar_is_high(const secp256k1_scalar *a);
/** Conditionally negate a number, in constant time.
* Returns -1 if the number was negated, 1 otherwise */
static int secp256k1_scalar_cond_negate(secp256k1_scalar *a, int flag);
#ifndef USE_NUM_NONE
/** Convert a scalar to a number. */
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a);
/** Get the order of the group as a number. */
static void secp256k1_scalar_order_get_num(secp256k1_num *r);
#endif
/** Compare two scalars. */
static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b);
#ifdef USE_ENDOMORPHISM
/** Find r1 and r2 such that r1+r2*2^128 = a. */
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
/** Find r1 and r2 such that r1+r2*lambda = a, and r1 and r2 are maximum 128 bits long (see secp256k1_gej_mul_lambda). */
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a);
#endif
/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
/** Generate two scalars from a 32-byte seed and an integer using the chacha20 stream cipher */
static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx);
#endif /* SECP256K1_SCALAR_H */
#endif
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
@ -38,6 +265,9 @@ static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b
/** Set a scalar to an unsigned integer. */
static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v);
/** Set a scalar to an unsigned 64-bit integer */
static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v);
/** Convert a scalar to a byte array. */
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a);
@ -103,4 +333,9 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
/** Multiply a and b (without taking the modulus!), divide by 2**shift, and round to the nearest integer. Shift must be at least 256. */
static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift);
/** Generate two scalars from a 32-byte seed and an integer using the chacha20 stream cipher */
static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx);
#endif /* SECP256K1_SCALAR_H */
#endif

49
src/secp256k1/src/scalar_4x64.h

@ -1,3 +1,49 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_H
#define SECP256K1_SCALAR_REPR_H
#include <stdint.h>
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint64_t d[4];
} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}}
#endif /* SECP256K1_SCALAR_REPR_H */
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_H
#define SECP256K1_SCALAR_REPR_H
#include <stdint.h>
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint64_t d[4];
} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}}
#endif /* SECP256K1_SCALAR_REPR_H */
#endif
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
@ -17,3 +63,6 @@ typedef struct {
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{((uint64_t)(d1)) << 32 | (d0), ((uint64_t)(d3)) << 32 | (d2), ((uint64_t)(d5)) << 32 | (d4), ((uint64_t)(d7)) << 32 | (d6)}}
#endif /* SECP256K1_SCALAR_REPR_H */
#endif

1056
src/secp256k1/src/scalar_4x64_impl.h

File diff suppressed because it is too large

24
src/secp256k1/src/scalar_8x32.h

@ -1,3 +1,26 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_H
#define SECP256K1_SCALAR_REPR_H
#include <stdint.h>
/** A scalar modulo the group order of the secp256k1 curve. */
typedef struct {
uint32_t d[8];
} secp256k1_scalar;
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
#endif /* SECP256K1_SCALAR_REPR_H */
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
@ -17,3 +40,4 @@ typedef struct {
#define SECP256K1_SCALAR_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{(d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7)}}
#endif /* SECP256K1_SCALAR_REPR_H */
#endif

838
src/secp256k1/src/scalar_8x32_impl.h

@ -1,3 +1,5 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
@ -719,3 +721,839 @@ SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r,
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
#define SECP256K1_SCALAR_REPR_IMPL_H
#include <string.h>
/* Limbs of the secp256k1 order. */
#define SECP256K1_N_0 ((uint32_t)0xD0364141UL)
#define SECP256K1_N_1 ((uint32_t)0xBFD25E8CUL)
#define SECP256K1_N_2 ((uint32_t)0xAF48A03BUL)
#define SECP256K1_N_3 ((uint32_t)0xBAAEDCE6UL)
#define SECP256K1_N_4 ((uint32_t)0xFFFFFFFEUL)
#define SECP256K1_N_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_7 ((uint32_t)0xFFFFFFFFUL)
/* Limbs of 2^256 minus the secp256k1 order. */
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
#define SECP256K1_N_C_2 (~SECP256K1_N_2)
#define SECP256K1_N_C_3 (~SECP256K1_N_3)
#define SECP256K1_N_C_4 (1)
/* Limbs of half the secp256k1 order. */
#define SECP256K1_N_H_0 ((uint32_t)0x681B20A0UL)
#define SECP256K1_N_H_1 ((uint32_t)0xDFE92F46UL)
#define SECP256K1_N_H_2 ((uint32_t)0x57A4501DUL)
#define SECP256K1_N_H_3 ((uint32_t)0x5D576E73UL)
#define SECP256K1_N_H_4 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_5 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_6 ((uint32_t)0xFFFFFFFFUL)
#define SECP256K1_N_H_7 ((uint32_t)0x7FFFFFFFUL)
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
r->d[0] = 0;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
r->d[4] = 0;
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
}
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
r->d[0] = v;
r->d[1] = 0;
r->d[2] = 0;
r->d[3] = 0;
r->d[4] = 0;
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
}
SECP256K1_INLINE static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v) {
r->d[0] = v;
r->d[1] = v >> 32;
r->d[2] = 0;
r->d[3] = 0;
r->d[4] = 0;
r->d[5] = 0;
r->d[6] = 0;
r->d[7] = 0;
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK((offset + count - 1) >> 5 == offset >> 5);
return (a->d[offset >> 5] >> (offset & 0x1F)) & ((1 << count) - 1);
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
VERIFY_CHECK(count < 32);
VERIFY_CHECK(offset + count <= 256);
if ((offset + count - 1) >> 5 == offset >> 5) {
return secp256k1_scalar_get_bits(a, offset, count);
} else {
VERIFY_CHECK((offset >> 5) + 1 < 8);
return ((a->d[offset >> 5] >> (offset & 0x1F)) | (a->d[(offset >> 5) + 1] << (32 - (offset & 0x1F)))) & ((((uint32_t)1) << count) - 1);
}
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_7); /* No need for a > check. */
no |= (a->d[6] < SECP256K1_N_6); /* No need for a > check. */
no |= (a->d[5] < SECP256K1_N_5); /* No need for a > check. */
no |= (a->d[4] < SECP256K1_N_4);
yes |= (a->d[4] > SECP256K1_N_4) & ~no;
no |= (a->d[3] < SECP256K1_N_3) & ~yes;
yes |= (a->d[3] > SECP256K1_N_3) & ~no;
no |= (a->d[2] < SECP256K1_N_2) & ~yes;
yes |= (a->d[2] > SECP256K1_N_2) & ~no;
no |= (a->d[1] < SECP256K1_N_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_1) & ~no;
yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
return yes;
}
SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, uint32_t overflow) {
uint64_t t;
VERIFY_CHECK(overflow <= 1);
t = (uint64_t)r->d[0] + overflow * SECP256K1_N_C_0;
r->d[0] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[1] + overflow * SECP256K1_N_C_1;
r->d[1] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[2] + overflow * SECP256K1_N_C_2;
r->d[2] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[3] + overflow * SECP256K1_N_C_3;
r->d[3] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[4] + overflow * SECP256K1_N_C_4;
r->d[4] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[5];
r->d[5] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[6];
r->d[6] = t & 0xFFFFFFFFUL; t >>= 32;
t += (uint64_t)r->d[7];
r->d[7] = t & 0xFFFFFFFFUL;
return overflow;
}
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
int overflow;
uint64_t t = (uint64_t)a->d[0] + b->d[0];
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[1] + b->d[1];
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[2] + b->d[2];
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[3] + b->d[3];
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[4] + b->d[4];
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[5] + b->d[5];
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[6] + b->d[6];
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)a->d[7] + b->d[7];
r->d[7] = t & 0xFFFFFFFFULL; t >>= 32;
overflow = t + secp256k1_scalar_check_overflow(r);
VERIFY_CHECK(overflow == 0 || overflow == 1);
secp256k1_scalar_reduce(r, overflow);
return overflow;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
uint64_t t;
VERIFY_CHECK(bit < 256);
bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 5) > 7 makes this a noop */
t = (uint64_t)r->d[0] + (((uint32_t)((bit >> 5) == 0)) << (bit & 0x1F));
r->d[0] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[1] + (((uint32_t)((bit >> 5) == 1)) << (bit & 0x1F));
r->d[1] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[2] + (((uint32_t)((bit >> 5) == 2)) << (bit & 0x1F));
r->d[2] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[3] + (((uint32_t)((bit >> 5) == 3)) << (bit & 0x1F));
r->d[3] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[4] + (((uint32_t)((bit >> 5) == 4)) << (bit & 0x1F));
r->d[4] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[5] + (((uint32_t)((bit >> 5) == 5)) << (bit & 0x1F));
r->d[5] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[6] + (((uint32_t)((bit >> 5) == 6)) << (bit & 0x1F));
r->d[6] = t & 0xFFFFFFFFULL; t >>= 32;
t += (uint64_t)r->d[7] + (((uint32_t)((bit >> 5) == 7)) << (bit & 0x1F));
r->d[7] = t & 0xFFFFFFFFULL;
#ifdef VERIFY
VERIFY_CHECK((t >> 32) == 0);
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
int over;
r->d[0] = (uint32_t)b32[31] | (uint32_t)b32[30] << 8 | (uint32_t)b32[29] << 16 | (uint32_t)b32[28] << 24;
r->d[1] = (uint32_t)b32[27] | (uint32_t)b32[26] << 8 | (uint32_t)b32[25] << 16 | (uint32_t)b32[24] << 24;
r->d[2] = (uint32_t)b32[23] | (uint32_t)b32[22] << 8 | (uint32_t)b32[21] << 16 | (uint32_t)b32[20] << 24;
r->d[3] = (uint32_t)b32[19] | (uint32_t)b32[18] << 8 | (uint32_t)b32[17] << 16 | (uint32_t)b32[16] << 24;
r->d[4] = (uint32_t)b32[15] | (uint32_t)b32[14] << 8 | (uint32_t)b32[13] << 16 | (uint32_t)b32[12] << 24;
r->d[5] = (uint32_t)b32[11] | (uint32_t)b32[10] << 8 | (uint32_t)b32[9] << 16 | (uint32_t)b32[8] << 24;
r->d[6] = (uint32_t)b32[7] | (uint32_t)b32[6] << 8 | (uint32_t)b32[5] << 16 | (uint32_t)b32[4] << 24;
r->d[7] = (uint32_t)b32[3] | (uint32_t)b32[2] << 8 | (uint32_t)b32[1] << 16 | (uint32_t)b32[0] << 24;
over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
if (overflow) {
*overflow = over;
}
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
bin[0] = a->d[7] >> 24; bin[1] = a->d[7] >> 16; bin[2] = a->d[7] >> 8; bin[3] = a->d[7];
bin[4] = a->d[6] >> 24; bin[5] = a->d[6] >> 16; bin[6] = a->d[6] >> 8; bin[7] = a->d[6];
bin[8] = a->d[5] >> 24; bin[9] = a->d[5] >> 16; bin[10] = a->d[5] >> 8; bin[11] = a->d[5];
bin[12] = a->d[4] >> 24; bin[13] = a->d[4] >> 16; bin[14] = a->d[4] >> 8; bin[15] = a->d[4];
bin[16] = a->d[3] >> 24; bin[17] = a->d[3] >> 16; bin[18] = a->d[3] >> 8; bin[19] = a->d[3];
bin[20] = a->d[2] >> 24; bin[21] = a->d[2] >> 16; bin[22] = a->d[2] >> 8; bin[23] = a->d[2];
bin[24] = a->d[1] >> 24; bin[25] = a->d[1] >> 16; bin[26] = a->d[1] >> 8; bin[27] = a->d[1];
bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
return (a->d[0] | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(a) == 0);
uint64_t t = (uint64_t)(~a->d[0]) + SECP256K1_N_0 + 1;
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[1]) + SECP256K1_N_1;
r->d[1] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[2]) + SECP256K1_N_2;
r->d[2] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[3]) + SECP256K1_N_3;
r->d[3] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[4]) + SECP256K1_N_4;
r->d[4] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[5]) + SECP256K1_N_5;
r->d[5] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[6]) + SECP256K1_N_6;
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(~a->d[7]) + SECP256K1_N_7;
r->d[7] = t & nonzero;
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3] | a->d[4] | a->d[5] | a->d[6] | a->d[7]) == 0;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
int yes = 0;
int no = 0;
no |= (a->d[7] < SECP256K1_N_H_7);
yes |= (a->d[7] > SECP256K1_N_H_7) & ~no;
no |= (a->d[6] < SECP256K1_N_H_6) & ~yes; /* No need for a > check. */
no |= (a->d[5] < SECP256K1_N_H_5) & ~yes; /* No need for a > check. */
no |= (a->d[4] < SECP256K1_N_H_4) & ~yes; /* No need for a > check. */
no |= (a->d[3] < SECP256K1_N_H_3) & ~yes;
yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
no |= (a->d[2] < SECP256K1_N_H_2) & ~yes;
yes |= (a->d[2] > SECP256K1_N_H_2) & ~no;
no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
return yes;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
/* If we are flag = 0, mask = 00...00 and this is a no-op;
* if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
uint32_t mask = !flag - 1;
uint32_t nonzero = 0xFFFFFFFFUL * (secp256k1_scalar_is_zero(r) == 0);
uint64_t t = (uint64_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
r->d[0] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
r->d[1] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
r->d[2] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
r->d[3] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[4] ^ mask) + (SECP256K1_N_4 & mask);
r->d[4] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[5] ^ mask) + (SECP256K1_N_5 & mask);
r->d[5] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[6] ^ mask) + (SECP256K1_N_6 & mask);
r->d[6] = t & nonzero; t >>= 32;
t += (uint64_t)(r->d[7] ^ mask) + (SECP256K1_N_7 & mask);
r->d[7] = t & nonzero;
return 2 * (mask == 0) - 1;
}
/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd(a,b) { \
uint32_t tl, th; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
c1 += th; /* overflow is handled on the next line */ \
c2 += (c1 < th) ? 1 : 0; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}
/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
#define muladd_fast(a,b) { \
uint32_t tl, th; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
c0 += tl; /* overflow is handled on the next line */ \
th += (c0 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
c1 += th; /* never overflows by contract (verified in the next line) */ \
VERIFY_CHECK(c1 >= th); \
}
/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd2(a,b) { \
uint32_t tl, th, th2, tl2; \
{ \
uint64_t t = (uint64_t)a * b; \
th = t >> 32; /* at most 0xFFFFFFFE */ \
tl = t; \
} \
th2 = th + th; /* at most 0xFFFFFFFE (in case th was 0x7FFFFFFF) */ \
c2 += (th2 < th) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
tl2 = tl + tl; /* at most 0xFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFF) */ \
th2 += (tl2 < tl) ? 1 : 0; /* at most 0xFFFFFFFF */ \
c0 += tl2; /* overflow is handled on the next line */ \
th2 += (c0 < tl2) ? 1 : 0; /* second overflow is handled on the next line */ \
c2 += (c0 < tl2) & (th2 == 0); /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
c1 += th2; /* overflow is handled on the next line */ \
c2 += (c1 < th2) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
}
/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
#define sumadd(a) { \
unsigned int over; \
c0 += (a); /* overflow is handled on the next line */ \
over = (c0 < (a)) ? 1 : 0; \
c1 += over; /* overflow is handled on the next line */ \
c2 += (c1 < over) ? 1 : 0; /* never overflows by contract */ \
}
/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
c0 += (a); /* overflow is handled on the next line */ \
c1 += (c0 < (a)) ? 1 : 0; /* never overflows by contract (verified the next line) */ \
VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
VERIFY_CHECK(c2 == 0); \
}
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. */
#define extract(n) { \
(n) = c0; \
c0 = c1; \
c1 = c2; \
c2 = 0; \
}
/** Extract the lowest 32 bits of (c0,c1,c2) into n, and left shift the number 32 bits. c2 is required to be zero. */
#define extract_fast(n) { \
(n) = c0; \
c0 = c1; \
c1 = 0; \
VERIFY_CHECK(c2 == 0); \
}
static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint32_t *l) {
uint64_t c;
uint32_t n0 = l[8], n1 = l[9], n2 = l[10], n3 = l[11], n4 = l[12], n5 = l[13], n6 = l[14], n7 = l[15];
uint32_t m0, m1, m2, m3, m4, m5, m6, m7, m8, m9, m10, m11, m12;
uint32_t p0, p1, p2, p3, p4, p5, p6, p7, p8;
/* 96 bit accumulator. */
uint32_t c0, c1, c2;
/* Reduce 512 bits into 385. */
/* m[0..12] = l[0..7] + n[0..7] * SECP256K1_N_C. */
c0 = l[0]; c1 = 0; c2 = 0;
muladd_fast(n0, SECP256K1_N_C_0);
extract_fast(m0);
sumadd_fast(l[1]);
muladd(n1, SECP256K1_N_C_0);
muladd(n0, SECP256K1_N_C_1);
extract(m1);
sumadd(l[2]);
muladd(n2, SECP256K1_N_C_0);
muladd(n1, SECP256K1_N_C_1);
muladd(n0, SECP256K1_N_C_2);
extract(m2);
sumadd(l[3]);
muladd(n3, SECP256K1_N_C_0);
muladd(n2, SECP256K1_N_C_1);
muladd(n1, SECP256K1_N_C_2);
muladd(n0, SECP256K1_N_C_3);
extract(m3);
sumadd(l[4]);
muladd(n4, SECP256K1_N_C_0);
muladd(n3, SECP256K1_N_C_1);
muladd(n2, SECP256K1_N_C_2);
muladd(n1, SECP256K1_N_C_3);
sumadd(n0);
extract(m4);
sumadd(l[5]);
muladd(n5, SECP256K1_N_C_0);
muladd(n4, SECP256K1_N_C_1);
muladd(n3, SECP256K1_N_C_2);
muladd(n2, SECP256K1_N_C_3);
sumadd(n1);
extract(m5);
sumadd(l[6]);
muladd(n6, SECP256K1_N_C_0);
muladd(n5, SECP256K1_N_C_1);
muladd(n4, SECP256K1_N_C_2);
muladd(n3, SECP256K1_N_C_3);
sumadd(n2);
extract(m6);
sumadd(l[7]);
muladd(n7, SECP256K1_N_C_0);
muladd(n6, SECP256K1_N_C_1);
muladd(n5, SECP256K1_N_C_2);
muladd(n4, SECP256K1_N_C_3);
sumadd(n3);
extract(m7);
muladd(n7, SECP256K1_N_C_1);
muladd(n6, SECP256K1_N_C_2);
muladd(n5, SECP256K1_N_C_3);
sumadd(n4);
extract(m8);
muladd(n7, SECP256K1_N_C_2);
muladd(n6, SECP256K1_N_C_3);
sumadd(n5);
extract(m9);
muladd(n7, SECP256K1_N_C_3);
sumadd(n6);
extract(m10);
sumadd_fast(n7);
extract_fast(m11);
VERIFY_CHECK(c0 <= 1);
m12 = c0;
/* Reduce 385 bits into 258. */
/* p[0..8] = m[0..7] + m[8..12] * SECP256K1_N_C. */
c0 = m0; c1 = 0; c2 = 0;
muladd_fast(m8, SECP256K1_N_C_0);
extract_fast(p0);
sumadd_fast(m1);
muladd(m9, SECP256K1_N_C_0);
muladd(m8, SECP256K1_N_C_1);
extract(p1);
sumadd(m2);
muladd(m10, SECP256K1_N_C_0);
muladd(m9, SECP256K1_N_C_1);
muladd(m8, SECP256K1_N_C_2);
extract(p2);
sumadd(m3);
muladd(m11, SECP256K1_N_C_0);
muladd(m10, SECP256K1_N_C_1);
muladd(m9, SECP256K1_N_C_2);
muladd(m8, SECP256K1_N_C_3);
extract(p3);
sumadd(m4);
muladd(m12, SECP256K1_N_C_0);
muladd(m11, SECP256K1_N_C_1);
muladd(m10, SECP256K1_N_C_2);
muladd(m9, SECP256K1_N_C_3);
sumadd(m8);
extract(p4);
sumadd(m5);
muladd(m12, SECP256K1_N_C_1);
muladd(m11, SECP256K1_N_C_2);
muladd(m10, SECP256K1_N_C_3);
sumadd(m9);
extract(p5);
sumadd(m6);
muladd(m12, SECP256K1_N_C_2);
muladd(m11, SECP256K1_N_C_3);
sumadd(m10);
extract(p6);
sumadd_fast(m7);
muladd_fast(m12, SECP256K1_N_C_3);
sumadd_fast(m11);
extract_fast(p7);
p8 = c0 + m12;
VERIFY_CHECK(p8 <= 2);
/* Reduce 258 bits into 256. */
/* r[0..7] = p[0..7] + p[8] * SECP256K1_N_C. */
c = p0 + (uint64_t)SECP256K1_N_C_0 * p8;
r->d[0] = c & 0xFFFFFFFFUL; c >>= 32;
c += p1 + (uint64_t)SECP256K1_N_C_1 * p8;
r->d[1] = c & 0xFFFFFFFFUL; c >>= 32;
c += p2 + (uint64_t)SECP256K1_N_C_2 * p8;
r->d[2] = c & 0xFFFFFFFFUL; c >>= 32;
c += p3 + (uint64_t)SECP256K1_N_C_3 * p8;
r->d[3] = c & 0xFFFFFFFFUL; c >>= 32;
c += p4 + (uint64_t)p8;
r->d[4] = c & 0xFFFFFFFFUL; c >>= 32;
c += p5;
r->d[5] = c & 0xFFFFFFFFUL; c >>= 32;
c += p6;
r->d[6] = c & 0xFFFFFFFFUL; c >>= 32;
c += p7;
r->d[7] = c & 0xFFFFFFFFUL; c >>= 32;
/* Final reduction of r. */
secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}
static void secp256k1_scalar_mul_512(uint32_t *l, const secp256k1_scalar *a, const secp256k1_scalar *b) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
/* l[0..15] = a[0..7] * b[0..7]. */
muladd_fast(a->d[0], b->d[0]);
extract_fast(l[0]);
muladd(a->d[0], b->d[1]);
muladd(a->d[1], b->d[0]);
extract(l[1]);
muladd(a->d[0], b->d[2]);
muladd(a->d[1], b->d[1]);
muladd(a->d[2], b->d[0]);
extract(l[2]);
muladd(a->d[0], b->d[3]);
muladd(a->d[1], b->d[2]);
muladd(a->d[2], b->d[1]);
muladd(a->d[3], b->d[0]);
extract(l[3]);
muladd(a->d[0], b->d[4]);
muladd(a->d[1], b->d[3]);
muladd(a->d[2], b->d[2]);
muladd(a->d[3], b->d[1]);
muladd(a->d[4], b->d[0]);
extract(l[4]);
muladd(a->d[0], b->d[5]);
muladd(a->d[1], b->d[4]);
muladd(a->d[2], b->d[3]);
muladd(a->d[3], b->d[2]);
muladd(a->d[4], b->d[1]);
muladd(a->d[5], b->d[0]);
extract(l[5]);
muladd(a->d[0], b->d[6]);
muladd(a->d[1], b->d[5]);
muladd(a->d[2], b->d[4]);
muladd(a->d[3], b->d[3]);
muladd(a->d[4], b->d[2]);
muladd(a->d[5], b->d[1]);
muladd(a->d[6], b->d[0]);
extract(l[6]);
muladd(a->d[0], b->d[7]);
muladd(a->d[1], b->d[6]);
muladd(a->d[2], b->d[5]);
muladd(a->d[3], b->d[4]);
muladd(a->d[4], b->d[3]);
muladd(a->d[5], b->d[2]);
muladd(a->d[6], b->d[1]);
muladd(a->d[7], b->d[0]);
extract(l[7]);
muladd(a->d[1], b->d[7]);
muladd(a->d[2], b->d[6]);
muladd(a->d[3], b->d[5]);
muladd(a->d[4], b->d[4]);
muladd(a->d[5], b->d[3]);
muladd(a->d[6], b->d[2]);
muladd(a->d[7], b->d[1]);
extract(l[8]);
muladd(a->d[2], b->d[7]);
muladd(a->d[3], b->d[6]);
muladd(a->d[4], b->d[5]);
muladd(a->d[5], b->d[4]);
muladd(a->d[6], b->d[3]);
muladd(a->d[7], b->d[2]);
extract(l[9]);
muladd(a->d[3], b->d[7]);
muladd(a->d[4], b->d[6]);
muladd(a->d[5], b->d[5]);
muladd(a->d[6], b->d[4]);
muladd(a->d[7], b->d[3]);
extract(l[10]);
muladd(a->d[4], b->d[7]);
muladd(a->d[5], b->d[6]);
muladd(a->d[6], b->d[5]);
muladd(a->d[7], b->d[4]);
extract(l[11]);
muladd(a->d[5], b->d[7]);
muladd(a->d[6], b->d[6]);
muladd(a->d[7], b->d[5]);
extract(l[12]);
muladd(a->d[6], b->d[7]);
muladd(a->d[7], b->d[6]);
extract(l[13]);
muladd_fast(a->d[7], b->d[7]);
extract_fast(l[14]);
VERIFY_CHECK(c1 == 0);
l[15] = c0;
}
static void secp256k1_scalar_sqr_512(uint32_t *l, const secp256k1_scalar *a) {
/* 96 bit accumulator. */
uint32_t c0 = 0, c1 = 0, c2 = 0;
/* l[0..15] = a[0..7]^2. */
muladd_fast(a->d[0], a->d[0]);
extract_fast(l[0]);
muladd2(a->d[0], a->d[1]);
extract(l[1]);
muladd2(a->d[0], a->d[2]);
muladd(a->d[1], a->d[1]);
extract(l[2]);
muladd2(a->d[0], a->d[3]);
muladd2(a->d[1], a->d[2]);
extract(l[3]);
muladd2(a->d[0], a->d[4]);
muladd2(a->d[1], a->d[3]);
muladd(a->d[2], a->d[2]);
extract(l[4]);
muladd2(a->d[0], a->d[5]);
muladd2(a->d[1], a->d[4]);
muladd2(a->d[2], a->d[3]);
extract(l[5]);
muladd2(a->d[0], a->d[6]);
muladd2(a->d[1], a->d[5]);
muladd2(a->d[2], a->d[4]);
muladd(a->d[3], a->d[3]);
extract(l[6]);
muladd2(a->d[0], a->d[7]);
muladd2(a->d[1], a->d[6]);
muladd2(a->d[2], a->d[5]);
muladd2(a->d[3], a->d[4]);
extract(l[7]);
muladd2(a->d[1], a->d[7]);
muladd2(a->d[2], a->d[6]);
muladd2(a->d[3], a->d[5]);
muladd(a->d[4], a->d[4]);
extract(l[8]);
muladd2(a->d[2], a->d[7]);
muladd2(a->d[3], a->d[6]);
muladd2(a->d[4], a->d[5]);
extract(l[9]);
muladd2(a->d[3], a->d[7]);
muladd2(a->d[4], a->d[6]);
muladd(a->d[5], a->d[5]);
extract(l[10]);
muladd2(a->d[4], a->d[7]);
muladd2(a->d[5], a->d[6]);
extract(l[11]);
muladd2(a->d[5], a->d[7]);
muladd(a->d[6], a->d[6]);
extract(l[12]);
muladd2(a->d[6], a->d[7]);
extract(l[13]);
muladd_fast(a->d[7], a->d[7]);
extract_fast(l[14]);
VERIFY_CHECK(c1 == 0);
l[15] = c0;
}
#undef sumadd
#undef sumadd_fast
#undef muladd
#undef muladd_fast
#undef muladd2
#undef extract
#undef extract_fast
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
uint32_t l[16];
secp256k1_scalar_mul_512(l, a, b);
secp256k1_scalar_reduce_512(r, l);
}
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
int ret;
VERIFY_CHECK(n > 0);
VERIFY_CHECK(n < 16);
ret = r->d[0] & ((1 << n) - 1);
r->d[0] = (r->d[0] >> n) + (r->d[1] << (32 - n));
r->d[1] = (r->d[1] >> n) + (r->d[2] << (32 - n));
r->d[2] = (r->d[2] >> n) + (r->d[3] << (32 - n));
r->d[3] = (r->d[3] >> n) + (r->d[4] << (32 - n));
r->d[4] = (r->d[4] >> n) + (r->d[5] << (32 - n));
r->d[5] = (r->d[5] >> n) + (r->d[6] << (32 - n));
r->d[6] = (r->d[6] >> n) + (r->d[7] << (32 - n));
r->d[7] = (r->d[7] >> n);
return ret;
}
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
uint32_t l[16];
secp256k1_scalar_sqr_512(l, a);
secp256k1_scalar_reduce_512(r, l);
}
#ifdef USE_ENDOMORPHISM
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
r1->d[0] = a->d[0];
r1->d[1] = a->d[1];
r1->d[2] = a->d[2];
r1->d[3] = a->d[3];
r1->d[4] = 0;
r1->d[5] = 0;
r1->d[6] = 0;
r1->d[7] = 0;
r2->d[0] = a->d[4];
r2->d[1] = a->d[5];
r2->d[2] = a->d[6];
r2->d[3] = a->d[7];
r2->d[4] = 0;
r2->d[5] = 0;
r2->d[6] = 0;
r2->d[7] = 0;
}
#endif
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3]) | (a->d[4] ^ b->d[4]) | (a->d[5] ^ b->d[5]) | (a->d[6] ^ b->d[6]) | (a->d[7] ^ b->d[7])) == 0;
}
SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
uint32_t l[16];
unsigned int shiftlimbs;
unsigned int shiftlow;
unsigned int shifthigh;
VERIFY_CHECK(shift >= 256);
secp256k1_scalar_mul_512(l, a, b);
shiftlimbs = shift >> 5;
shiftlow = shift & 0x1F;
shifthigh = 32 - shiftlow;
r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 480 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[1] = shift < 480 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[2] = shift < 448 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 416 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[3] = shift < 416 ? (l[3 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[4 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[4] = shift < 384 ? (l[4 + shiftlimbs] >> shiftlow | (shift < 352 && shiftlow ? (l[5 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[5] = shift < 352 ? (l[5 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[6 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[6] = shift < 320 ? (l[6 + shiftlimbs] >> shiftlow | (shift < 288 && shiftlow ? (l[7 + shiftlimbs] << shifthigh) : 0)) : 0;
r->d[7] = shift < 288 ? (l[7 + shiftlimbs] >> shiftlow) : 0;
secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 5] >> ((shift - 1) & 0x1f)) & 1);
}
#define ROTL32(x,n) ((x) << (n) | (x) >> (32-(n)))
#define QUARTERROUND(a,b,c,d) \
a += b; d = ROTL32(d ^ a, 16); \
c += d; b = ROTL32(b ^ c, 12); \
a += b; d = ROTL32(d ^ a, 8); \
c += d; b = ROTL32(b ^ c, 7);
#ifdef WORDS_BIGENDIAN
#define LE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#define BE32(p) (p)
#else
#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#define LE32(p) (p)
#endif
static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t idx) {
size_t n;
size_t over_count = 0;
uint32_t seed32[8];
uint32_t x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
int over1, over2;
memcpy((void *) seed32, (const void *) seed, 32);
do {
x0 = 0x61707865;
x1 = 0x3320646e;
x2 = 0x79622d32;
x3 = 0x6b206574;
x4 = LE32(seed32[0]);
x5 = LE32(seed32[1]);
x6 = LE32(seed32[2]);
x7 = LE32(seed32[3]);
x8 = LE32(seed32[4]);
x9 = LE32(seed32[5]);
x10 = LE32(seed32[6]);
x11 = LE32(seed32[7]);
x12 = idx;
x13 = idx >> 32;
x14 = 0;
x15 = over_count;
n = 10;
while (n--) {
QUARTERROUND(x0, x4, x8,x12)
QUARTERROUND(x1, x5, x9,x13)
QUARTERROUND(x2, x6,x10,x14)
QUARTERROUND(x3, x7,x11,x15)
QUARTERROUND(x0, x5,x10,x15)
QUARTERROUND(x1, x6,x11,x12)
QUARTERROUND(x2, x7, x8,x13)
QUARTERROUND(x3, x4, x9,x14)
}
x0 += 0x61707865;
x1 += 0x3320646e;
x2 += 0x79622d32;
x3 += 0x6b206574;
x4 += LE32(seed32[0]);
x5 += LE32(seed32[1]);
x6 += LE32(seed32[2]);
x7 += LE32(seed32[3]);
x8 += LE32(seed32[4]);
x9 += LE32(seed32[5]);
x10 += LE32(seed32[6]);
x11 += LE32(seed32[7]);
x12 += idx;
x13 += idx >> 32;
x14 += 0;
x15 += over_count;
r1->d[7] = LE32(x0);
r1->d[6] = LE32(x1);
r1->d[5] = LE32(x2);
r1->d[4] = LE32(x3);
r1->d[3] = LE32(x4);
r1->d[2] = LE32(x5);
r1->d[1] = LE32(x6);
r1->d[0] = LE32(x7);
r2->d[7] = LE32(x8);
r2->d[6] = LE32(x9);
r2->d[5] = LE32(x10);
r2->d[4] = LE32(x11);
r2->d[3] = LE32(x12);
r2->d[2] = LE32(x13);
r2->d[1] = LE32(x14);
r2->d[0] = LE32(x15);
over1 = secp256k1_scalar_check_overflow(r1);
over2 = secp256k1_scalar_check_overflow(r2);
over_count++;
} while (over1 | over2);
}
#undef ROTL32
#undef QUARTERROUND
#undef BE32
#undef LE32
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#endif

340
src/secp256k1/src/scalar_impl.h

@ -1,3 +1,5 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
@ -331,3 +333,341 @@ static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar
#endif
#endif /* SECP256K1_SCALAR_IMPL_H */
#else
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_IMPL_H
#define SECP256K1_SCALAR_IMPL_H
#include "group.h"
#include "scalar.h"
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low_impl.h"
#elif defined(USE_SCALAR_4X64)
#include "scalar_4x64_impl.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32_impl.h"
#else
#error "Please select scalar implementation"
#endif
#ifndef USE_NUM_NONE
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
unsigned char c[32];
secp256k1_scalar_get_b32(c, a);
secp256k1_num_set_bin(r, c, 32);
}
/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
#if defined(EXHAUSTIVE_TEST_ORDER)
static const unsigned char order[32] = {
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
};
#else
static const unsigned char order[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
};
#endif
secp256k1_num_set_bin(r, order, 32);
}
#endif
static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(EXHAUSTIVE_TEST_ORDER)
int i;
*r = 0;
for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
*r = i;
/* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
* have a composite group order; fix it in exhaustive_tests.c). */
VERIFY_CHECK(*r != 0);
}
#else
secp256k1_scalar *t;
int i;
/* First compute xN as x ^ (2^N - 1) for some values of N,
* and uM as x ^ M for some values of M. */
secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126;
secp256k1_scalar u2, u5, u9, u11, u13;
secp256k1_scalar_sqr(&u2, x);
secp256k1_scalar_mul(&x2, &u2, x);
secp256k1_scalar_mul(&u5, &u2, &x2);
secp256k1_scalar_mul(&x3, &u5, &u2);
secp256k1_scalar_mul(&u9, &x3, &u2);
secp256k1_scalar_mul(&u11, &u9, &u2);
secp256k1_scalar_mul(&u13, &u11, &u2);
secp256k1_scalar_sqr(&x6, &u13);
secp256k1_scalar_sqr(&x6, &x6);
secp256k1_scalar_mul(&x6, &x6, &u11);
secp256k1_scalar_sqr(&x8, &x6);
secp256k1_scalar_sqr(&x8, &x8);
secp256k1_scalar_mul(&x8, &x8, &x2);
secp256k1_scalar_sqr(&x14, &x8);
for (i = 0; i < 5; i++) {
secp256k1_scalar_sqr(&x14, &x14);
}
secp256k1_scalar_mul(&x14, &x14, &x6);
secp256k1_scalar_sqr(&x28, &x14);
for (i = 0; i < 13; i++) {
secp256k1_scalar_sqr(&x28, &x28);
}
secp256k1_scalar_mul(&x28, &x28, &x14);
secp256k1_scalar_sqr(&x56, &x28);
for (i = 0; i < 27; i++) {
secp256k1_scalar_sqr(&x56, &x56);
}
secp256k1_scalar_mul(&x56, &x56, &x28);
secp256k1_scalar_sqr(&x112, &x56);
for (i = 0; i < 55; i++) {
secp256k1_scalar_sqr(&x112, &x112);
}
secp256k1_scalar_mul(&x112, &x112, &x56);
secp256k1_scalar_sqr(&x126, &x112);
for (i = 0; i < 13; i++) {
secp256k1_scalar_sqr(&x126, &x126);
}
secp256k1_scalar_mul(&x126, &x126, &x14);
/* Then accumulate the final result (t starts at x126). */
t = &x126;
for (i = 0; i < 3; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 5; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 5; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 6; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 3; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 5; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
for (i = 0; i < 6; i++) { /* 000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u5); /* 101 */
for (i = 0; i < 10; i++) { /* 0000000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 4; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x3); /* 111 */
for (i = 0; i < 9; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
for (i = 0; i < 5; i++) { /* 0 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
for (i = 0; i < 6; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u11); /* 1011 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 5; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &x2); /* 11 */
for (i = 0; i < 6; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 10; i++) { /* 000000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u13); /* 1101 */
for (i = 0; i < 4; i++) {
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, &u9); /* 1001 */
for (i = 0; i < 6; i++) { /* 00000 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(t, t, x); /* 1 */
for (i = 0; i < 8; i++) { /* 00 */
secp256k1_scalar_sqr(t, t);
}
secp256k1_scalar_mul(r, t, &x6); /* 111111 */
}
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
return !(a->d[0] & 1);
}
#endif
static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(USE_SCALAR_INV_BUILTIN)
secp256k1_scalar_inverse(r, x);
#elif defined(USE_SCALAR_INV_NUM)
unsigned char b[32];
secp256k1_num n, m;
secp256k1_scalar t = *x;
secp256k1_scalar_get_b32(b, &t);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_scalar_order_get_num(&m);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
secp256k1_scalar_set_b32(r, b, NULL);
/* Verify that the inverse was computed correctly, without GMP code. */
secp256k1_scalar_mul(&t, &t, r);
CHECK(secp256k1_scalar_is_one(&t));
#else
#error "Please select scalar inverse implementation"
#endif
}
#ifdef USE_ENDOMORPHISM
#if defined(EXHAUSTIVE_TEST_ORDER)
/**
* Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
* full case we don't bother making k1 and k2 be small, we just want them to be
* nontrivial to get full test coverage for the exhaustive tests. We therefore
* (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
*r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
*r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
}
#else
/**
* The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
* lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
* 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
*
* "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
* (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
* and k2 have a small size.
* It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
*
* - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
* - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
* - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
* - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
*
* The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
* k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
* compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
*
* g1, g2 are precomputed constants used to replace division with a rounded multiplication
* when decomposing the scalar for an endomorphism-based point multiplication.
*
* The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
* Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
*
* The derivation is described in the paper "Efficient Software Implementation of Public-Key
* Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
* Section 4.3 (here we use a somewhat higher-precision estimate):
* d = a1*b2 - b1*a2
* g1 = round((2^272)*b2/d)
* g2 = round((2^272)*b1/d)
*
* (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
* as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
*
* The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
*/
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
secp256k1_scalar c1, c2;
static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
);
static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
);
static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
);
static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
);
static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
);
VERIFY_CHECK(r1 != a);
VERIFY_CHECK(r2 != a);
/* these _var calls are constant time since the shift amount is constant */
secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
secp256k1_scalar_mul(&c1, &c1, &minus_b1);
secp256k1_scalar_mul(&c2, &c2, &minus_b2);
secp256k1_scalar_add(r2, &c1, &c2);
secp256k1_scalar_mul(r1, r2, &minus_lambda);
secp256k1_scalar_add(r1, r1, a);
}
#endif
#endif
#endif /* SECP256K1_SCALAR_IMPL_H */
#endif

20
src/secp256k1/src/scalar_low.h

@ -1,3 +1,22 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_H
#define SECP256K1_SCALAR_REPR_H
#include <stdint.h>
/** A scalar modulo the group order of the secp256k1 curve. */
typedef uint32_t secp256k1_scalar;
#endif /* SECP256K1_SCALAR_REPR_H */
#else
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
@ -13,3 +32,4 @@
typedef uint32_t secp256k1_scalar;
#endif /* SECP256K1_SCALAR_REPR_H */
#endif

126
src/secp256k1/src/scalar_low_impl.h

@ -1,3 +1,5 @@
#ifdef ENABLE_MODULE_MUSIG
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
@ -112,3 +114,127 @@ SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#else
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_SCALAR_REPR_IMPL_H
#define SECP256K1_SCALAR_REPR_IMPL_H
#include "scalar.h"
#include <string.h>
SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
return !(*a & 1);
}
SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) { *r = 0; }
SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) { *r = v; }
SECP256K1_INLINE static void secp256k1_scalar_set_u64(secp256k1_scalar *r, uint64_t v) { *r = v % EXHAUSTIVE_TEST_ORDER; }
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
if (offset < 32)
return ((*a >> offset) & ((((uint32_t)1) << count) - 1));
else
return 0;
}
SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
return secp256k1_scalar_get_bits(a, offset, count);
}
SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) { return *a >= EXHAUSTIVE_TEST_ORDER; }
static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
*r = (*a + *b) % EXHAUSTIVE_TEST_ORDER;
return *r < *b;
}
static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
if (flag && bit < 32)
*r += (1 << bit);
#ifdef VERIFY
VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
#endif
}
static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
const int base = 0x100 % EXHAUSTIVE_TEST_ORDER;
int i;
*r = 0;
for (i = 0; i < 32; i++) {
*r = ((*r * base) + b32[i]) % EXHAUSTIVE_TEST_ORDER;
}
/* just deny overflow, it basically always happens */
if (overflow) *overflow = 0;
}
static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
memset(bin, 0, 32);
bin[28] = *a >> 24; bin[29] = *a >> 16; bin[30] = *a >> 8; bin[31] = *a;
}
SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
return *a == 0;
}
static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
if (*a == 0) {
*r = 0;
} else {
*r = EXHAUSTIVE_TEST_ORDER - *a;
}
}
SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
return *a == 1;
}
static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
return *a > EXHAUSTIVE_TEST_ORDER / 2;
}
static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
if (flag) secp256k1_scalar_negate(r, r);
return flag ? -1 : 1;
}
static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
*r = (*a * *b) % EXHAUSTIVE_TEST_ORDER;
}
static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
int ret;
VERIFY_CHECK(n > 0);
VERIFY_CHECK(n < 16);
ret = *r & ((1 << n) - 1);
*r >>= n;
return ret;
}
static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
*r = (*a * *a) % EXHAUSTIVE_TEST_ORDER;
}
static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
*r1 = *a;
*r2 = 0;
}
SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
return *a == *b;
}
SECP256K1_INLINE static void secp256k1_scalar_chacha20(secp256k1_scalar *r1, secp256k1_scalar *r2, const unsigned char *seed, uint64_t n) {
*r1 = (seed[0] + n) % EXHAUSTIVE_TEST_ORDER;
*r2 = (seed[1] + n) % EXHAUSTIVE_TEST_ORDER;
}
#endif /* SECP256K1_SCALAR_REPR_IMPL_H */
#endif

Loading…
Cancel
Save