CLI interface to SDL
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1538 lines
58 KiB

use std::time::SystemTime;
use std::io::{self, Read, Write};
use std::cmp;
use std::collections::{HashMap, HashSet};
use std::sync::{Arc, RwLock};
use std::io::{Error, ErrorKind};
use rand::{Rng, rngs::OsRng};
use log::{info, warn, error};
use protobuf::parse_from_bytes;
use secp256k1::SecretKey;
use bip39::{Mnemonic, Language};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use pairing::bls12_381::{Bls12};
use sha2::{Sha256, Digest};
use zcash_client_backend::{
encoding::{encode_payment_address, encode_extended_spending_key},
proto::compact_formats::CompactBlock, welding_rig::scan_block,
};
use zcash_primitives::{
block::BlockHash,
merkle_tree::{CommitmentTree},
serialize::{Vector},
transaction::{
builder::{Builder},
components::{Amount, OutPoint, TxOut}, components::amount::DEFAULT_FEE,
TxId, Transaction,
},
legacy::{Script, TransparentAddress},
note_encryption::{Memo, try_sapling_note_decryption, try_sapling_output_recovery},
zip32::{ExtendedFullViewingKey, ExtendedSpendingKey, ChildIndex},
JUBJUB,
primitives::{PaymentAddress},
};
use crate::lightclient::{LightClientConfig};
mod data;
mod extended_key;
mod utils;
mod address;
mod prover;
pub mod bugs;
use data::{BlockData, WalletTx, Utxo, SaplingNoteData, SpendableNote, OutgoingTxMetadata};
use extended_key::{KeyIndex, ExtendedPrivKey};
pub const MAX_REORG: usize = 100;
fn now() -> f64 {
SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs() as f64
}
/// Sha256(Sha256(value))
pub fn double_sha256(payload: &[u8]) -> Vec<u8> {
let h1 = Sha256::digest(&payload);
let h2 = Sha256::digest(&h1);
h2.to_vec()
}
use base58::{ToBase58};
/// A trait for converting a [u8] to base58 encoded string.
pub trait ToBase58Check {
/// Converts a value of `self` to a base58 value, returning the owned string.
/// The version is a coin-specific prefix that is added.
/// The suffix is any bytes that we want to add at the end (like the "iscompressed" flag for
/// Secret key encoding)
fn to_base58check(&self, version: &[u8], suffix: &[u8]) -> String;
}
impl ToBase58Check for [u8] {
fn to_base58check(&self, version: &[u8], suffix: &[u8]) -> String {
let mut payload: Vec<u8> = Vec::new();
payload.extend_from_slice(version);
payload.extend_from_slice(self);
payload.extend_from_slice(suffix);
let mut checksum = double_sha256(&payload);
payload.append(&mut checksum[..4].to_vec());
payload.to_base58()
}
}
pub struct LightWallet {
// Is the wallet encrypted? If it is, then when writing to disk, the seed is always encrypted
// and the individual spending keys are not written
encrypted: bool,
// In memory only (i.e, this field is not written to disk). Is the wallet unlocked and are
// the spending keys present to allow spending from this wallet?
unlocked: bool,
enc_seed: [u8; 48], // If locked, this contains the encrypted seed
nonce: Vec<u8>, // Nonce used to encrypt the wallet.
seed: [u8; 32], // Seed phrase for this wallet. If wallet is locked, this is 0
// List of keys, actually in this wallet. If the wallet is locked, the `extsks` will be
// encrypted (but the fvks are not encrpyted)
extsks: Arc<RwLock<Vec<ExtendedSpendingKey>>>,
extfvks: Arc<RwLock<Vec<ExtendedFullViewingKey>>>,
pub zaddress: Arc<RwLock<Vec<PaymentAddress<Bls12>>>>,
// Transparent keys. If the wallet is locked, then the secret keys will be encrypted,
// but the addresses will be present.
tkeys: Arc<RwLock<Vec<secp256k1::SecretKey>>>,
pub taddresses: Arc<RwLock<Vec<String>>>,
blocks: Arc<RwLock<Vec<BlockData>>>,
pub txs: Arc<RwLock<HashMap<TxId, WalletTx>>>,
// The block at which this wallet was born. Rescans
// will start from here.
birthday: u64,
// Non-serialized fields
config: LightClientConfig,
}
impl LightWallet {
pub fn serialized_version() -> u64 {
return 4;
}
fn get_taddr_from_bip39seed(config: &LightClientConfig, bip39_seed: &[u8], pos: u32) -> SecretKey {
assert_eq!(bip39_seed.len(), 64);
let ext_t_key = ExtendedPrivKey::with_seed(bip39_seed).unwrap();
ext_t_key
.derive_private_key(KeyIndex::hardened_from_normalize_index(44).unwrap()).unwrap()
.derive_private_key(KeyIndex::hardened_from_normalize_index(config.get_coin_type()).unwrap()).unwrap()
.derive_private_key(KeyIndex::hardened_from_normalize_index(0).unwrap()).unwrap()
.derive_private_key(KeyIndex::Normal(0)).unwrap()
.derive_private_key(KeyIndex::Normal(pos)).unwrap()
.private_key
}
fn get_zaddr_from_bip39seed(config: &LightClientConfig, bip39_seed: &[u8], pos: u32) ->
(ExtendedSpendingKey, ExtendedFullViewingKey, PaymentAddress<Bls12>) {
assert_eq!(bip39_seed.len(), 64);
let extsk: ExtendedSpendingKey = ExtendedSpendingKey::from_path(
&ExtendedSpendingKey::master(bip39_seed),
&[
ChildIndex::Hardened(32),
ChildIndex::Hardened(config.get_coin_type()),
ChildIndex::Hardened(pos)
],
);
let extfvk = ExtendedFullViewingKey::from(&extsk);
let address = extfvk.default_address().unwrap().1;
(extsk, extfvk, address)
}
pub fn new(seed_phrase: Option<String>, config: &LightClientConfig, latest_block: u64) -> io::Result<Self> {
// This is the source entropy that corresponds to the 24-word seed phrase
let mut seed_bytes = [0u8; 32];
if seed_phrase.is_none() {
// Create a random seed.
let mut system_rng = OsRng;
system_rng.fill(&mut seed_bytes);
} else {
seed_bytes.copy_from_slice(&Mnemonic::from_phrase(seed_phrase.expect("should have a seed phrase"),
Language::English).unwrap().entropy());
}
// The seed bytes is the raw entropy. To pass it to HD wallet generation,
// we need to get the 64 byte bip39 entropy
let bip39_seed = bip39::Seed::new(&Mnemonic::from_entropy(&seed_bytes, Language::English).unwrap(), "");
// Derive only the first sk and address
let tpk = LightWallet::get_taddr_from_bip39seed(&config, &bip39_seed.as_bytes(), 0);
let taddr = LightWallet::address_from_prefix_sk(&config.base58_pubkey_address(), &tpk);
// TODO: We need to monitor addresses, and always keep 1 "free" address, so
// users can import a seed phrase and automatically get all used addresses
let (extsk, extfvk, address)
= LightWallet::get_zaddr_from_bip39seed(&config, &bip39_seed.as_bytes(), 0);
Ok(LightWallet {
encrypted: false,
unlocked: true,
enc_seed: [0u8; 48],
nonce: vec![],
seed: seed_bytes,
extsks: Arc::new(RwLock::new(vec![extsk])),
extfvks: Arc::new(RwLock::new(vec![extfvk])),
zaddress: Arc::new(RwLock::new(vec![address])),
tkeys: Arc::new(RwLock::new(vec![tpk])),
taddresses: Arc::new(RwLock::new(vec![taddr])),
blocks: Arc::new(RwLock::new(vec![])),
txs: Arc::new(RwLock::new(HashMap::new())),
config: config.clone(),
birthday: latest_block,
})
}
pub fn read<R: Read>(mut reader: R, config: &LightClientConfig) -> io::Result<Self> {
let version = reader.read_u64::<LittleEndian>()?;
if version > LightWallet::serialized_version() {
let e = format!("Don't know how to read wallet version {}. Do you have the latest version?", version);
error!("{}", e);
return Err(io::Error::new(ErrorKind::InvalidData, e));
}
info!("Reading wallet version {}", version);
let encrypted = if version >= 4 {
reader.read_u8()? > 0
} else {
false
};
let mut enc_seed = [0u8; 48];
if version >= 4 {
reader.read_exact(&mut enc_seed)?;
}
let nonce = if version >= 4 {
Vector::read(&mut reader, |r| r.read_u8())?
} else {
vec![]
};
// Seed
let mut seed_bytes = [0u8; 32];
reader.read_exact(&mut seed_bytes)?;
// Read the spending keys
let extsks = Vector::read(&mut reader, |r| ExtendedSpendingKey::read(r))?;
let extfvks = if version >= 4 {
// Read the viewing keys
Vector::read(&mut reader, |r| ExtendedFullViewingKey::read(r))?
} else {
// Calculate the viewing keys
extsks.iter().map(|sk| ExtendedFullViewingKey::from(sk))
.collect::<Vec<ExtendedFullViewingKey>>()
};
// Calculate the addresses
let addresses = extfvks.iter().map( |fvk| fvk.default_address().unwrap().1 )
.collect::<Vec<PaymentAddress<Bls12>>>();
let tkeys = Vector::read(&mut reader, |r| {
let mut tpk_bytes = [0u8; 32];
r.read_exact(&mut tpk_bytes)?;
secp256k1::SecretKey::from_slice(&tpk_bytes).map_err(|e| io::Error::new(ErrorKind::InvalidData, e))
})?;
let taddresses = if version >= 4 {
// Read the addresses
Vector::read(&mut reader, |r| utils::read_string(r))?
} else {
// Calculate the addresses
tkeys.iter().map(|sk| LightWallet::address_from_prefix_sk(&config.base58_pubkey_address(), sk)).collect()
};
let blocks = Vector::read(&mut reader, |r| BlockData::read(r))?;
let txs_tuples = Vector::read(&mut reader, |r| {
let mut txid_bytes = [0u8; 32];
r.read_exact(&mut txid_bytes)?;
Ok((TxId{0: txid_bytes}, WalletTx::read(r).unwrap()))
})?;
let txs = txs_tuples.into_iter().collect::<HashMap<TxId, WalletTx>>();
let chain_name = utils::read_string(&mut reader)?;
if chain_name != config.chain_name {
return Err(Error::new(ErrorKind::InvalidData,
format!("Wallet chain name {} doesn't match expected {}", chain_name, config.chain_name)));
}
let birthday = reader.read_u64::<LittleEndian>()?;
Ok(LightWallet{
encrypted: encrypted,
unlocked: !encrypted, // When reading from disk, if wallet is encrypted, it starts off locked.
enc_seed: enc_seed,
nonce: nonce,
seed: seed_bytes,
extsks: Arc::new(RwLock::new(extsks)),
extfvks: Arc::new(RwLock::new(extfvks)),
zaddress: Arc::new(RwLock::new(addresses)),
tkeys: Arc::new(RwLock::new(tkeys)),
taddresses: Arc::new(RwLock::new(taddresses)),
blocks: Arc::new(RwLock::new(blocks)),
txs: Arc::new(RwLock::new(txs)),
config: config.clone(),
birthday,
})
}
pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
if self.encrypted && self.unlocked {
return Err(Error::new(ErrorKind::InvalidInput,
format!("Cannot write while wallet is unlocked while encrypted.")));
}
// Write the version
writer.write_u64::<LittleEndian>(LightWallet::serialized_version())?;
// Write if it is locked
writer.write_u8(if self.encrypted {1} else {0})?;
// Write the encrypted seed bytes
writer.write_all(&self.enc_seed)?;
// Write the nonce
Vector::write(&mut writer, &self.nonce, |w, b| w.write_u8(*b))?;
// Write the seed
writer.write_all(&self.seed)?;
// Flush after writing the seed, so in case of a disaster, we can still recover the seed.
writer.flush()?;
// Write all the spending keys
Vector::write(&mut writer, &self.extsks.read().unwrap(),
|w, sk| sk.write(w)
)?;
// Write the FVKs
Vector::write(&mut writer, &self.extfvks.read().unwrap(),
|w, fvk| fvk.write(w)
)?;
// Write the transparent private keys
Vector::write(&mut writer, &self.tkeys.read().unwrap(),
|w, pk| w.write_all(&pk[..])
)?;
// Write the transparent addresses
Vector::write(&mut writer, &self.taddresses.read().unwrap(),
|w, a| utils::write_string(w, a)
)?;
Vector::write(&mut writer, &self.blocks.read().unwrap(), |w, b| b.write(w))?;
// The hashmap, write as a set of tuples
Vector::write(&mut writer, &self.txs.read().unwrap().iter().collect::<Vec<(&TxId, &WalletTx)>>(),
|w, (k, v)| {
w.write_all(&k.0)?;
v.write(w)
})?;
utils::write_string(&mut writer, &self.config.chain_name)?;
// While writing the birthday, be sure that we're right, and that we don't
// have a tx that is before the current birthday
writer.write_u64::<LittleEndian>(self.get_birthday())?;
Ok(())
}
pub fn note_address(hrp: &str, note: &SaplingNoteData) -> Option<String> {
match note.extfvk.fvk.vk.into_payment_address(note.diversifier, &JUBJUB) {
Some(pa) => Some(encode_payment_address(hrp, &pa)),
None => None
}
}
pub fn get_birthday(&self) -> u64 {
cmp::min(self.get_first_tx_block(), self.birthday)
}
// Get the first block that this wallet has a tx in. This is often used as the wallet's "birthday"
// If there are no Txns, then the actual birthday (which is recorder at wallet creation) is returned
// If no birthday was recorded, return the sapling activation height
pub fn get_first_tx_block(&self) -> u64 {
// Find the first transaction
let mut blocks = self.txs.read().unwrap().values()
.map(|wtx| wtx.block as u64)
.collect::<Vec<u64>>();
blocks.sort();
*blocks.first() // Returns optional
.unwrap_or(&cmp::max(self.birthday, self.config.sapling_activation_height))
}
// Get all z-address private keys. Returns a Vector of (address, privatekey)
pub fn get_z_private_keys(&self) -> Vec<(String, String)> {
self.extsks.read().unwrap().iter().map(|sk| {
(encode_payment_address(self.config.hrp_sapling_address(),
&ExtendedFullViewingKey::from(sk).default_address().unwrap().1),
encode_extended_spending_key(self.config.hrp_sapling_private_key(), &sk)
)
}).collect::<Vec<(String, String)>>()
}
/// Get all t-address private keys. Returns a Vector of (address, secretkey)
pub fn get_t_secret_keys(&self) -> Vec<(String, String)> {
self.tkeys.read().unwrap().iter().map(|sk| {
(self.address_from_sk(sk),
sk[..].to_base58check(&self.config.base58_secretkey_prefix(), &[0x01]))
}).collect::<Vec<(String, String)>>()
}
/// Adds a new z address to the wallet. This will derive a new address from the seed
/// at the next position and add it to the wallet.
/// NOTE: This does NOT rescan
pub fn add_zaddr(&self) -> String {
if !self.unlocked {
return "".to_string();
}
let pos = self.extsks.read().unwrap().len() as u32;
let bip39_seed = bip39::Seed::new(&Mnemonic::from_entropy(&self.seed, Language::English).unwrap(), "");
let (extsk, extfvk, address) =
LightWallet::get_zaddr_from_bip39seed(&self.config, &bip39_seed.as_bytes(), pos);
let zaddr = encode_payment_address(self.config.hrp_sapling_address(), &address);
self.extsks.write().unwrap().push(extsk);
self.extfvks.write().unwrap().push(extfvk);
self.zaddress.write().unwrap().push(address);
zaddr
}
/// Add a new t address to the wallet. This will derive a new address from the seed
/// at the next position.
/// NOTE: This is not rescan the wallet
pub fn add_taddr(&self) -> String {
if !self.unlocked {
return "".to_string();
}
let pos = self.tkeys.read().unwrap().len() as u32;
let bip39_seed = bip39::Seed::new(&Mnemonic::from_entropy(&self.seed, Language::English).unwrap(), "");
let sk = LightWallet::get_taddr_from_bip39seed(&self.config, &bip39_seed.as_bytes(), pos);
let address = self.address_from_sk(&sk);
self.tkeys.write().unwrap().push(sk);
self.taddresses.write().unwrap().push(address.clone());
address
}
/// Clears all the downloaded blocks and resets the state back to the initial block.
/// After this, the wallet's initial state will need to be set
/// and the wallet will need to be rescanned
pub fn clear_blocks(&self) {
self.blocks.write().unwrap().clear();
self.txs.write().unwrap().clear();
}
pub fn set_initial_block(&self, height: i32, hash: &str, sapling_tree: &str) -> bool {
let mut blocks = self.blocks.write().unwrap();
if !blocks.is_empty() {
return false;
}
let hash = match hex::decode(hash) {
Ok(hash) => {
let mut r = hash;
r.reverse();
BlockHash::from_slice(&r)
},
Err(e) => {
eprintln!("{}", e);
return false;
}
};
let sapling_tree = match hex::decode(sapling_tree) {
Ok(tree) => tree,
Err(e) => {
eprintln!("{}", e);
return false;
}
};
if let Ok(tree) = CommitmentTree::read(&sapling_tree[..]) {
blocks.push(BlockData { height, hash, tree });
true
} else {
false
}
}
// Get the latest sapling commitment tree. It will return the height and the hex-encoded sapling commitment tree at that height
pub fn get_sapling_tree(&self) -> Result<(i32, String, String), String> {
let blocks = self.blocks.read().unwrap();
let block = match blocks.last() {
Some(block) => block,
None => return Err("Couldn't get a block height!".to_string())
};
let mut write_buf = vec![];
block.tree.write(&mut write_buf).map_err(|e| format!("Error writing commitment tree {}", e))?;
let mut blockhash = vec![];
blockhash.extend_from_slice(&block.hash.0);
blockhash.reverse();
Ok((block.height, hex::encode(blockhash), hex::encode(write_buf)))
}
pub fn last_scanned_height(&self) -> i32 {
self.blocks.read().unwrap()
.last()
.map(|block| block.height)
.unwrap_or(self.config.sapling_activation_height as i32 - 1)
}
/// Determines the target height for a transaction, and the offset from which to
/// select anchors, based on the current synchronised block chain.
fn get_target_height_and_anchor_offset(&self) -> Option<(u32, usize)> {
match {
let blocks = self.blocks.read().unwrap();
(
blocks.first().map(|block| block.height as u32),
blocks.last().map(|block| block.height as u32),
)
} {
(Some(min_height), Some(max_height)) => {
let target_height = max_height + 1;
// Select an anchor ANCHOR_OFFSET back from the target block,
// unless that would be before the earliest block we have.
let anchor_height =
cmp::max(target_height.saturating_sub(self.config.anchor_offset), min_height);
Some((target_height, (target_height - anchor_height) as usize))
}
_ => None,
}
}
pub fn memo_str(memo: &Option<Memo>) -> Option<String> {
match memo {
Some(memo) => {
match memo.to_utf8() {
Some(Ok(memo_str)) => Some(memo_str),
_ => None
}
}
_ => None
}
}
pub fn address_from_prefix_sk(prefix: &[u8; 1], sk: &secp256k1::SecretKey) -> String {
let secp = secp256k1::Secp256k1::new();
let pk = secp256k1::PublicKey::from_secret_key(&secp, &sk);
// Encode into t address
let mut hash160 = ripemd160::Ripemd160::new();
hash160.input(Sha256::digest(&pk.serialize()[..].to_vec()));
hash160.result().to_base58check(prefix, &[])
}
pub fn address_from_sk(&self, sk: &secp256k1::SecretKey) -> String {
LightWallet::address_from_prefix_sk(&self.config.base58_pubkey_address(), sk)
}
pub fn address_from_pubkeyhash(&self, ta: Option<TransparentAddress>) -> Option<String> {
match ta {
Some(TransparentAddress::PublicKey(hash)) => {
Some(hash.to_base58check(&self.config.base58_pubkey_address(), &[]))
},
Some(TransparentAddress::Script(hash)) => {
Some(hash.to_base58check(&self.config.base58_script_address(), &[]))
},
_ => None
}
}
pub fn get_seed_phrase(&self) -> String {
if !self.unlocked {
return "".to_string();
}
Mnemonic::from_entropy(&self.seed,
Language::English,
).unwrap().phrase().to_string()
}
pub fn encrypt(&mut self, passwd: String) -> io::Result<()> {
use sodiumoxide::crypto::secretbox;
if self.encrypted {
return Err(io::Error::new(ErrorKind::AlreadyExists, "Wallet is already encrypted"));
}
// Get the doublesha256 of the password, which is the right length
let key = secretbox::Key::from_slice(&double_sha256(passwd.as_bytes())).unwrap();
let nonce = secretbox::gen_nonce();
let cipher = secretbox::seal(&self.seed, &nonce, &key);
self.enc_seed.copy_from_slice(&cipher);
self.nonce = vec![];
self.nonce.extend_from_slice(nonce.as_ref());
self.encrypted = true;
self.lock()?;
Ok(())
}
pub fn lock(&mut self) -> io::Result<()> {
if !self.encrypted {
return Err(io::Error::new(ErrorKind::AlreadyExists, "Wallet is not encrypted"));
}
if !self.unlocked {
return Err(io::Error::new(ErrorKind::AlreadyExists, "Wallet is already locked"));
}
// Empty the seed and the secret keys
self.seed.copy_from_slice(&[0u8; 32]);
self.tkeys = Arc::new(RwLock::new(vec![]));
self.extsks = Arc::new(RwLock::new(vec![]));
self.unlocked = false;
Ok(())
}
pub fn unlock(&mut self, passwd: String) -> io::Result<()> {
use sodiumoxide::crypto::secretbox;
if !self.encrypted {
return Err(Error::new(ErrorKind::AlreadyExists, "Wallet is not encrypted"));
}
if self.encrypted && self.unlocked {
return Err(Error::new(ErrorKind::AlreadyExists, "Wallet is already unlocked"));
}
// Get the doublesha256 of the password, which is the right length
let key = secretbox::Key::from_slice(&double_sha256(passwd.as_bytes())).unwrap();
let nonce = secretbox::Nonce::from_slice(&self.nonce).unwrap();
let seed = match secretbox::open(&self.enc_seed, &nonce, &key) {
Ok(s) => s,
Err(_) => {return Err(io::Error::new(ErrorKind::InvalidData, "Decryption failed. Is your password correct?"));}
};
// Now that we have the seed, we'll generate the extsks and tkeys, and verify the fvks and addresses
// respectively match
// The seed bytes is the raw entropy. To pass it to HD wallet generation,
// we need to get the 64 byte bip39 entropy
let bip39_seed = bip39::Seed::new(&Mnemonic::from_entropy(&seed, Language::English).unwrap(), "");
// Sapling keys
let mut extsks = vec![];
for pos in 0..self.zaddress.read().unwrap().len() {
let (extsk, extfvk, address) =
LightWallet::get_zaddr_from_bip39seed(&self.config, &bip39_seed.as_bytes(), pos as u32);
if address != self.zaddress.read().unwrap()[pos] {
return Err(io::Error::new(ErrorKind::InvalidData,
format!("zaddress mismatch at {}. {:?} vs {:?}", pos, address, self.zaddress.read().unwrap()[pos])));
}
if extfvk != self.extfvks.read().unwrap()[pos] {
return Err(io::Error::new(ErrorKind::InvalidData,
format!("fvk mismatch at {}. {:?} vs {:?}", pos, extfvk, self.extfvks.read().unwrap()[pos])));
}
// Don't add it to self yet, we'll do that at the end when everything is verified
extsks.push(extsk);
}
// Transparent keys
let mut tkeys = vec![];
for pos in 0..self.taddresses.read().unwrap().len() {
let sk = LightWallet::get_taddr_from_bip39seed(&self.config, &bip39_seed.as_bytes(), pos as u32);
let address = self.address_from_sk(&sk);
if address != self.taddresses.read().unwrap()[pos] {
return Err(io::Error::new(ErrorKind::InvalidData,
format!("taddress mismatch at {}. {} vs {}", pos, address, self.taddresses.read().unwrap()[pos])));
}
tkeys.push(sk);
}
// Everything checks out, so we'll update our wallet with the decrypted values
self.extsks = Arc::new(RwLock::new(extsks));
self.tkeys = Arc::new(RwLock::new(tkeys));
self.seed.copy_from_slice(&seed);
self.encrypted = true;
self.unlocked = true;
Ok(())
}
// Removing encryption means unlocking it and setting the self.encrypted = false,
// permanantly removing the encryption
pub fn remove_encryption(&mut self, passwd: String) -> io::Result<()> {
if !self.encrypted {
return Err(Error::new(ErrorKind::AlreadyExists, "Wallet is not encrypted"));
}
// Unlock the wallet if it's locked
if !self.unlocked {
self.unlock(passwd)?;
}
// Permanantly remove the encryption
self.encrypted = false;
self.nonce = vec![];
self.enc_seed.copy_from_slice(&[0u8; 48]);
Ok(())
}
pub fn is_encrypted(&self) -> bool {
return self.encrypted;
}
pub fn is_unlocked_for_spending(&self) -> bool {
return self.unlocked;
}
pub fn zbalance(&self, addr: Option<String>) -> u64 {
self.txs.read().unwrap()
.values()
.map(|tx| {
tx.notes.iter()
.filter(|nd| { // TODO, this whole section is shared with verified_balance. Refactor it.
match addr.clone() {
Some(a) => a == encode_payment_address(
self.config.hrp_sapling_address(),
&nd.extfvk.fvk.vk
.into_payment_address(nd.diversifier, &JUBJUB).unwrap()
),
None => true
}
})
.map(|nd| if nd.spent.is_none() { nd.note.value } else { 0 })
.sum::<u64>()
})
.sum::<u64>()
}
// Get all (unspent) utxos. Unconfirmed spent utxos are included
pub fn get_utxos(&self) -> Vec<Utxo> {
let txs = self.txs.read().unwrap();
txs.values()
.flat_map(|tx| {
tx.utxos.iter().filter(|utxo| utxo.spent.is_none())
})
.map(|utxo| utxo.clone())
.collect::<Vec<Utxo>>()
}
pub fn tbalance(&self, addr: Option<String>) -> u64 {
self.get_utxos().iter()
.filter(|utxo| {
match addr.clone() {
Some(a) => utxo.address == a,
None => true,
}
})
.map(|utxo| utxo.value )
.sum::<u64>()
}
pub fn verified_zbalance(&self, addr: Option<String>) -> u64 {
let anchor_height = match self.get_target_height_and_anchor_offset() {
Some((height, anchor_offset)) => height - anchor_offset as u32 - 1,
None => return 0,
};
self.txs
.read()
.unwrap()
.values()
.map(|tx| {
if tx.block as u32 <= anchor_height {
tx.notes
.iter()
.filter(|nd| { // TODO, this whole section is shared with verified_balance. Refactor it.
match addr.clone() {
Some(a) => a == encode_payment_address(
self.config.hrp_sapling_address(),
&nd.extfvk.fvk.vk
.into_payment_address(nd.diversifier, &JUBJUB).unwrap()
),
None => true
}
})
.map(|nd| if nd.spent.is_none() && nd.unconfirmed_spent.is_none() { nd.note.value } else { 0 })
.sum::<u64>()
} else {
0
}
})
.sum::<u64>()
}
fn add_toutput_to_wtx(&self, height: i32, timestamp: u64, txid: &TxId, vout: &TxOut, n: u64) {
let mut txs = self.txs.write().unwrap();
// Find the existing transaction entry, or create a new one.
if !txs.contains_key(&txid) {
let tx_entry = WalletTx::new(height, timestamp, &txid);
txs.insert(txid.clone(), tx_entry);
}
let tx_entry = txs.get_mut(&txid).unwrap();
// Make sure the vout isn't already there.
match tx_entry.utxos.iter().find(|utxo| {
utxo.txid == *txid && utxo.output_index == n && Amount::from_u64(utxo.value).unwrap() == vout.value
}) {
Some(utxo) => {
info!("Already have {}:{}", utxo.txid, utxo.output_index);
}
None => {
let address = self.address_from_pubkeyhash(vout.script_pubkey.address());
if address.is_none() {
error!("Couldn't determine address for output!");
} else {
info!("Added to wallet {}:{}", txid, n);
// Add the utxo
tx_entry.utxos.push(Utxo {
address: address.unwrap(),
txid: txid.clone(),
output_index: n,
script: vout.script_pubkey.0.clone(),
value: vout.value.into(),
height,
spent: None,
unconfirmed_spent: None,
});
}
}
}
}
// Scan the full Tx and update memos for incoming shielded transactions.
pub fn scan_full_tx(&self, tx: &Transaction, height: i32, datetime: u64) {
let mut total_transparent_spend: u64 = 0;
// Scan all the inputs to see if we spent any transparent funds in this tx
for vin in tx.vin.iter() {
// Find the txid in the list of utxos that we have.
let txid = TxId {0: vin.prevout.hash};
match self.txs.write().unwrap().get_mut(&txid) {
Some(wtx) => {
//println!("Looking for {}, {}", txid, vin.prevout.n);
// One of the tx outputs is a match
let spent_utxo = wtx.utxos.iter_mut()
.find(|u| u.txid == txid && u.output_index == (vin.prevout.n as u64));
match spent_utxo {
Some(su) => {
info!("Spent utxo from {} was spent in {}", txid, tx.txid());
su.spent = Some(tx.txid().clone());
su.unconfirmed_spent = None;
total_transparent_spend += su.value;
},
_ => {}
}
},
_ => {}
};
}
if total_transparent_spend > 0 {
// Update the WalletTx. Do it in a short scope because of the write lock.
let mut txs = self.txs.write().unwrap();
if !txs.contains_key(&tx.txid()) {
let tx_entry = WalletTx::new(height, datetime, &tx.txid());
txs.insert(tx.txid().clone(), tx_entry);
}
txs.get_mut(&tx.txid()).unwrap()
.total_transparent_value_spent = total_transparent_spend;
}
// Scan for t outputs
let all_taddresses = self.taddresses.read().unwrap().iter()
.map(|a| a.clone())
.collect::<Vec<_>>();
for address in all_taddresses {
for (n, vout) in tx.vout.iter().enumerate() {
match vout.script_pubkey.address() {
Some(TransparentAddress::PublicKey(hash)) => {
if address == hash.to_base58check(&self.config.base58_pubkey_address(), &[]) {
// This is our address. Add this as an output to the txid
self.add_toutput_to_wtx(height, datetime, &tx.txid(), &vout, n as u64);
}
},
_ => {}
}
}
}
{
let total_shielded_value_spent = self.txs.read().unwrap().get(&tx.txid()).map_or(0, |wtx| wtx.total_shielded_value_spent);
if total_transparent_spend + total_shielded_value_spent > 0 {
// We spent money in this Tx, so grab all the transparent outputs (except ours) and add them to the
// outgoing metadata
// Collect our t-addresses
let wallet_taddrs = self.taddresses.read().unwrap().iter()
.map(|a| a.clone())
.collect::<HashSet<String>>();
for vout in tx.vout.iter() {
let taddr = self.address_from_pubkeyhash(vout.script_pubkey.address());
if taddr.is_some() && !wallet_taddrs.contains(&taddr.clone().unwrap()) {
let taddr = taddr.unwrap();
// Add it to outgoing metadata
let mut txs = self.txs.write().unwrap();
if txs.get(&tx.txid()).unwrap().outgoing_metadata.iter()
.find(|om|
om.address == taddr && Amount::from_u64(om.value).unwrap() == vout.value)
.is_some() {
warn!("Duplicate outgoing metadata");
continue;
}
// Write the outgoing metadata
txs.get_mut(&tx.txid()).unwrap()
.outgoing_metadata
.push(OutgoingTxMetadata{
address: taddr,
value: vout.value.into(),
memo: Memo::default(),
});
}
}
}
}
// Scan shielded sapling outputs to see if anyone of them is us, and if it is, extract the memo
for output in tx.shielded_outputs.iter() {
let ivks: Vec<_> = self.extfvks.read().unwrap().iter().map(
|extfvk| extfvk.fvk.vk.ivk().clone()
).collect();
let cmu = output.cmu;
let ct = output.enc_ciphertext;
// Search all of our keys
for (_account, ivk) in ivks.iter().enumerate() {
let epk_prime = output.ephemeral_key.as_prime_order(&JUBJUB).unwrap();
let (note, _to, memo) = match try_sapling_note_decryption(ivk, &epk_prime, &cmu, &ct) {
Some(ret) => ret,
None => continue,
};
{
info!("A sapling note was spent in {}", tx.txid());
// Update the WalletTx
// Do it in a short scope because of the write lock.
let mut txs = self.txs.write().unwrap();
txs.get_mut(&tx.txid()).unwrap()
.notes.iter_mut()
.find(|nd| nd.note == note).unwrap()
.memo = Some(memo);
}
}
// Also scan the output to see if it can be decoded with our OutgoingViewKey
// If it can, then we sent this transaction, so we should be able to get
// the memo and value for our records
// First, collect all our z addresses, to check for change
// Collect z addresses
let z_addresses = self.zaddress.read().unwrap().iter().map( |ad| {
encode_payment_address(self.config.hrp_sapling_address(), &ad)
}).collect::<HashSet<String>>();
// Search all ovks that we have
let ovks: Vec<_> = self.extfvks.read().unwrap().iter().map(
|extfvk| extfvk.fvk.ovk.clone()
).collect();
for (_account, ovk) in ovks.iter().enumerate() {
match try_sapling_output_recovery(ovk,
&output.cv,
&output.cmu,
&output.ephemeral_key.as_prime_order(&JUBJUB).unwrap(),
&output.enc_ciphertext,
&output.out_ciphertext) {
Some((note, payment_address, memo)) => {
let address = encode_payment_address(self.config.hrp_sapling_address(),
&payment_address);
// Check if this is a change address
if z_addresses.contains(&address) {
continue;
}
// Update the WalletTx
// Do it in a short scope because of the write lock.
{
info!("A sapling output was sent in {}", tx.txid());
let mut txs = self.txs.write().unwrap();
if txs.get(&tx.txid()).unwrap().outgoing_metadata.iter()
.find(|om| om.address == address && om.value == note.value)
.is_some() {
warn!("Duplicate outgoing metadata");
continue;
}
// Write the outgoing metadata
txs.get_mut(&tx.txid()).unwrap()
.outgoing_metadata
.push(OutgoingTxMetadata{
address, value: note.value, memo,
});
}
},
None => {}
};
}
}
// Mark this Tx as scanned
{
let mut txs = self.txs.write().unwrap();
match txs.get_mut(&tx.txid()) {
Some(wtx) => wtx.full_tx_scanned = true,
None => {},
};
}
}
// Invalidate all blocks including and after "at_height".
// Returns the number of blocks invalidated
pub fn invalidate_block(&self, at_height: i32) -> u64 {
let mut num_invalidated = 0;
// First remove the blocks
{
let mut blks = self.blocks.write().unwrap();
while blks.last().unwrap().height >= at_height {
blks.pop();
num_invalidated += 1;
}
}
// Next, remove entire transactions
{
let mut txs = self.txs.write().unwrap();
let txids_to_remove = txs.values()
.filter_map(|wtx| if wtx.block >= at_height {Some(wtx.txid.clone())} else {None})
.collect::<HashSet<TxId>>();
for txid in &txids_to_remove {
txs.remove(&txid);
}
// We also need to update any sapling note data and utxos in existing transactions that
// were spent in any of the txids that were removed
txs.values_mut()
.for_each(|wtx| {
wtx.notes.iter_mut()
.for_each(|nd| {
if nd.spent.is_some() && txids_to_remove.contains(&nd.spent.unwrap()) {
nd.spent = None;
}
if nd.unconfirmed_spent.is_some() && txids_to_remove.contains(&nd.spent.unwrap()) {
nd.unconfirmed_spent = None;
}
})
})
}
// Of the notes that still remain, unroll the witness.
// Remove `num_invalidated` items from the witness
{
let mut txs = self.txs.write().unwrap();
// Trim all witnesses for the invalidated blocks
for tx in txs.values_mut() {
for nd in tx.notes.iter_mut() {
nd.witnesses.split_off(nd.witnesses.len().saturating_sub(num_invalidated));
}
}
}
num_invalidated as u64
}
// Scan a block. Will return an error with the block height that failed to scan
pub fn scan_block(&self, block_bytes: &[u8]) -> Result<Vec<TxId>, i32> {
let block: CompactBlock = match parse_from_bytes(block_bytes) {
Ok(block) => block,
Err(e) => {
error!("Could not parse CompactBlock from bytes: {}", e);
return Err(-1);
}
};
// Scanned blocks MUST be height-sequential.
let height = block.get_height() as i32;
if height == self.last_scanned_height() {
// If the last scanned block is rescanned, check it still matches.
if let Some(hash) = self.blocks.read().unwrap().last().map(|block| block.hash) {
if block.hash() != hash {
warn!("Likely reorg. Block hash does not match for block {}. {} vs {}", height, block.hash(), hash);
return Err(height);
}
}
return Ok(vec![]);
} else if height != (self.last_scanned_height() + 1) {
error!(
"Block is not height-sequential (expected {}, found {})",
self.last_scanned_height() + 1,
height
);
return Err(self.last_scanned_height());
}
// Check to see that the previous block hash matches
if let Some(hash) = self.blocks.read().unwrap().last().map(|block| block.hash) {
if block.prev_hash() != hash {
warn!("Likely reorg. Prev block hash does not match for block {}. {} vs {}", height, block.prev_hash(), hash);
return Err(height-1);
}
}
// Get the most recent scanned data.
let mut block_data = BlockData {
height,
hash: block.hash(),
tree: self
.blocks
.read()
.unwrap()
.last()
.map(|block| block.tree.clone())
.unwrap_or(CommitmentTree::new()),
};
// Create a write lock that will last for the rest of the function.
let mut txs = self.txs.write().unwrap();
// Create a Vec containing all unspent nullifiers.
// Include only the confirmed spent nullifiers, since unconfirmed ones still need to be included
// during scan_block below.
let nfs: Vec<_> = txs
.iter()
.map(|(txid, tx)| {
let txid = *txid;
tx.notes.iter().filter_map(move |nd| {
if nd.spent.is_none() {
Some((nd.nullifier, nd.account, txid))
} else {
None
}
})
})
.flatten()
.collect();
// Prepare the note witnesses for updating
for tx in txs.values_mut() {
for nd in tx.notes.iter_mut() {
// Duplicate the most recent witness
if let Some(witness) = nd.witnesses.last() {
let clone = witness.clone();
nd.witnesses.push(clone);
}
// Trim the oldest witnesses
nd.witnesses = nd
.witnesses
.split_off(nd.witnesses.len().saturating_sub(100));
}
}
let new_txs = {
let nf_refs: Vec<_> = nfs.iter().map(|(nf, acc, _)| (&nf[..], *acc)).collect();
// Create a single mutable slice of all the newly-added witnesses.
let mut witness_refs: Vec<_> = txs
.values_mut()
.map(|tx| tx.notes.iter_mut().filter_map(|nd| nd.witnesses.last_mut()))
.flatten()
.collect();
scan_block(
block.clone(),
&self.extfvks.read().unwrap(),
&nf_refs[..],
&mut block_data.tree,
&mut witness_refs[..],
)
};
// If this block had any new Txs, return the list of ALL txids in this block,
// so the wallet can fetch them all as a decoy.
let all_txs = if !new_txs.is_empty() {
block.vtx.iter().map(|vtx| {
let mut t = [0u8; 32];
t.copy_from_slice(&vtx.hash[..]);
TxId{0: t}
}).collect::<Vec<TxId>>()
} else {
vec![]
};
for tx in new_txs {
// Mark notes as spent.
let mut total_shielded_value_spent: u64 = 0;
info!("Txid {} belongs to wallet", tx.txid);
for spend in &tx.shielded_spends {
let txid = nfs
.iter()
.find(|(nf, _, _)| &nf[..] == &spend.nf[..])
.unwrap()
.2;
let mut spent_note = txs
.get_mut(&txid)
.unwrap()
.notes
.iter_mut()
.find(|nd| &nd.nullifier[..] == &spend.nf[..])
.unwrap();
// Mark the note as spent, and remove the unconfirmed part of it
info!("Marked a note as spent");
spent_note.spent = Some(tx.txid);
spent_note.unconfirmed_spent = None::<TxId>;
total_shielded_value_spent += spent_note.note.value;
}
// Find the existing transaction entry, or create a new one.
if !txs.contains_key(&tx.txid) {
let tx_entry = WalletTx::new(block_data.height as i32, block.time as u64, &tx.txid);
txs.insert(tx.txid, tx_entry);
}
let tx_entry = txs.get_mut(&tx.txid).unwrap();
tx_entry.total_shielded_value_spent = total_shielded_value_spent;
// Save notes.
for output in tx.shielded_outputs
{
info!("Received sapling output");
let new_note = SaplingNoteData::new(&self.extfvks.read().unwrap()[output.account], output);
match tx_entry.notes.iter().find(|nd| nd.nullifier == new_note.nullifier) {
None => tx_entry.notes.push(new_note),
Some(_) => warn!("Tried to insert duplicate note for Tx {}", tx.txid)
};
}
}
{
let mut blks = self.blocks.write().unwrap();
// Store scanned data for this block.
blks.push(block_data);
// Trim the old blocks, keeping only as many as needed for a worst-case reorg (i.e. 101 blocks)
let len = blks.len();
if len > MAX_REORG + 1 {
let drain_first = len - (MAX_REORG+1);
blks.drain(..drain_first);
}
}
// Print info about the block every 10,000 blocks
if height % 10_000 == 0 {
match self.get_sapling_tree() {
Ok((h, hash, stree)) => info!("Sapling tree at height {}/{} - {}", h, hash, stree),
Err(e) => error!("Couldn't determine sapling tree: {}", e)
}
}
Ok(all_txs)
}
pub fn send_to_address(
&self,
consensus_branch_id: u32,
spend_params: &[u8],
output_params: &[u8],
tos: Vec<(&str, u64, Option<String>)>
) -> Result<Box<[u8]>, String> {
if !self.unlocked {
return Err("Cannot spend while wallet is locked".to_string());
}
let start_time = now();
if tos.len() == 0 {
return Err("Need at least one destination address".to_string());
}
// Check for duplicates in the to list
if tos.len() > 1 {
let mut to_addresses = tos.iter().map(|t| t.0.to_string()).collect::<Vec<_>>();
to_addresses.sort();
for i in 0..to_addresses.len()-1 {
if to_addresses[i] == to_addresses[i+1] {
return Err(format!("To address {} is duplicated", to_addresses[i]));
}
}
}
let total_value = tos.iter().map(|to| to.1).sum::<u64>();
println!(
"0: Creating transaction sending {} ztoshis to {} addresses",
total_value, tos.len()
);
// Convert address (str) to RecepientAddress and value to Amount
let tos = tos.iter().map(|to| {
let ra = match address::RecipientAddress::from_str(to.0,
self.config.hrp_sapling_address(),
self.config.base58_pubkey_address(),
self.config.base58_script_address()) {
Some(to) => to,
None => {
let e = format!("Invalid recipient address: '{}'", to.0);
error!("{}", e);
return Err(e);
}
};
let value = Amount::from_u64(to.1).unwrap();
Ok((ra, value, to.2.clone()))
}).collect::<Result<Vec<(address::RecipientAddress, Amount, Option<String>)>, String>>()?;
// Target the next block, assuming we are up-to-date.
let (height, anchor_offset) = match self.get_target_height_and_anchor_offset() {
Some(res) => res,
None => {
let e = format!("Cannot send funds before scanning any blocks");
error!("{}", e);
return Err(e);
}
};
// Select notes to cover the target value
println!("{}: Selecting notes", now() - start_time);
let target_value = Amount::from_u64(total_value).unwrap() + DEFAULT_FEE ;
let notes: Vec<_> = self.txs.read().unwrap().iter()
.map(|(txid, tx)| tx.notes.iter().map(move |note| (*txid, note)))
.flatten()
.filter_map(|(txid, note)|
SpendableNote::from(txid, note, anchor_offset, &self.extsks.read().unwrap()[note.account])
)
.scan(0, |running_total, spendable| {
let value = spendable.note.value;
let ret = if *running_total < u64::from(target_value) {
Some(spendable)
} else {
None
};
*running_total = *running_total + value;
ret
})
.collect();
let mut builder = Builder::new(height);
// A note on t addresses
// Funds received by t-addresses can't be explicitly spent in silentdragonlite.
// silentdragonlite will lazily consolidate all t address funds into your shielded addresses.
// Specifically, if you send an outgoing transaction that is sent to a shielded address,
// silentdragonlite will add all your t-address funds into that transaction, and send them to your shielded
// address as change.
let tinputs: Vec<_> = self.get_utxos().iter()
.filter(|utxo| utxo.unconfirmed_spent.is_none()) // Remove any unconfirmed spends
.map(|utxo| utxo.clone())
.collect();
// Create a map from address -> sk for all taddrs, so we can spend from the
// right address
let address_to_sk = self.tkeys.read().unwrap().iter()
.map(|sk| (self.address_from_sk(&sk), sk.clone()))
.collect::<HashMap<_,_>>();
// Add all tinputs
tinputs.iter()
.map(|utxo| {
let outpoint: OutPoint = utxo.to_outpoint();
let coin = TxOut {
value: Amount::from_u64(utxo.value).unwrap(),
script_pubkey: Script { 0: utxo.script.clone() },
};
match address_to_sk.get(&utxo.address) {
Some(sk) => builder.add_transparent_input(*sk, outpoint.clone(), coin.clone()),
None => {
// Something is very wrong
let e = format!("Couldn't find the secreykey for taddr {}", utxo.address);
error!("{}", e);
Err(zcash_primitives::transaction::builder::Error::InvalidAddress)
}
}
})
.collect::<Result<Vec<_>, _>>()
.map_err(|e| format!("{}", e))?;
// Confirm we were able to select sufficient value
let selected_value = notes.iter().map(|selected| selected.note.value).sum::<u64>()
+ tinputs.iter().map::<u64, _>(|utxo| utxo.value.into()).sum::<u64>();
if selected_value < u64::from(target_value) {
let e = format!(
"Insufficient verified funds (have {}, need {:?}). NOTE: funds need {} confirmations before they can be spent.",
selected_value, target_value, self.config.anchor_offset
);
error!("{}", e);
return Err(e);
}
// Create the transaction
println!("{}: Adding {} notes and {} utxos", now() - start_time, notes.len(), tinputs.len());
for selected in notes.iter() {
if let Err(e) = builder.add_sapling_spend(
selected.extsk.clone(),
selected.diversifier,
selected.note.clone(),
selected.witness.clone(),
) {
let e = format!("Error adding note: {:?}", e);
error!("{}", e);
return Err(e);
}
}
// If no Sapling notes were added, add the change address manually. That is,
// send the change to our sapling address manually. Note that if a sapling note was spent,
// the builder will automatically send change to that address
if notes.len() == 0 {
builder.send_change_to(
ExtendedFullViewingKey::from(&self.extsks.read().unwrap()[0]).fvk.ovk,
self.extsks.read().unwrap()[0].default_address().unwrap().1);
}
// TODO: We're using the first ovk to encrypt outgoing Txns. Is that Ok?
let ovk = self.extfvks.read().unwrap()[0].fvk.ovk;
for (to, value, memo) in tos {
// Compute memo if it exists
let encoded_memo = memo.map(|s| Memo::from_str(&s).unwrap());
println!("{}: Adding output", now() - start_time);
if let Err(e) = match to {
address::RecipientAddress::Shielded(to) => {
builder.add_sapling_output(ovk, to.clone(), value, encoded_memo)
}
address::RecipientAddress::Transparent(to) => {
builder.add_transparent_output(&to, value)
}
} {
let e = format!("Error adding output: {:?}", e);
error!("{}", e);
return Err(e);
}
}
println!("{}: Building transaction", now() - start_time);
let (tx, _) = match builder.build(
consensus_branch_id,
prover::InMemTxProver::new(spend_params, output_params),
) {
Ok(res) => res,
Err(e) => {
let e = format!("Error creating transaction: {:?}", e);
error!("{}", e);
return Err(e);
}
};
println!("{}: Transaction created", now() - start_time);
println!("Transaction ID: {}", tx.txid());
// Mark notes as spent.
{
// Mark sapling notes as unconfirmed spent
let mut txs = self.txs.write().unwrap();
for selected in notes {
let mut spent_note = txs.get_mut(&selected.txid).unwrap()
.notes.iter_mut()
.find(|nd| &nd.nullifier[..] == &selected.nullifier[..])
.unwrap();
spent_note.unconfirmed_spent = Some(tx.txid());
}
// Mark this utxo as unconfirmed spent
for utxo in tinputs {
let mut spent_utxo = txs.get_mut(&utxo.txid).unwrap().utxos.iter_mut()
.find(|u| utxo.txid == u.txid && utxo.output_index == u.output_index)
.unwrap();
spent_utxo.unconfirmed_spent = Some(tx.txid());
}
}
// Return the encoded transaction, so the caller can send it.
let mut raw_tx = vec![];
tx.write(&mut raw_tx).unwrap();
Ok(raw_tx.into_boxed_slice())
}
}
#[cfg(test)]
pub mod tests;