CLI interface to SDL
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

2129 lines
80 KiB

use std::time::SystemTime;
use std::io::{self, Read, Write};
use std::cmp;
use std::collections::{HashMap, HashSet};
use std::sync::{Arc, RwLock};
use std::io::{Error, ErrorKind};
use log::{info, warn, error};
use protobuf::parse_from_bytes;
use bip39::{Mnemonic, Language};
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use pairing::bls12_381::{Bls12};
use zcash_client_backend::{
encoding::{encode_payment_address, encode_extended_spending_key},
proto::compact_formats::CompactBlock, welding_rig::scan_block,
};
use zcash_primitives::{
block::BlockHash,
merkle_tree::{CommitmentTree},
serialize::{Vector},
transaction::{
builder::{Builder},
components::{Amount, OutPoint, TxOut}, components::amount::DEFAULT_FEE,
TxId, Transaction,
},
legacy::{Script, TransparentAddress},
note_encryption::{Memo, try_sapling_note_decryption, try_sapling_output_recovery},
zip32::{ExtendedFullViewingKey, ExtendedSpendingKey, ChildIndex},
JUBJUB,
primitives::{PaymentAddress},
};
use data::{BlockData, WalletTx, Utxo, SaplingNoteData, SpendableNote, OutgoingTxMetadata};
use crate::{address, prover, LightClientConfig, utils};
use sha2::{Sha256, Digest};
pub mod data;
pub mod extended_key;
use extended_key::{KeyIndex, ExtendedPrivKey};
const ANCHOR_OFFSET: u32 = 1;
pub const MAX_REORG: usize = 100;
fn now() -> f64 {
SystemTime::now().duration_since(SystemTime::UNIX_EPOCH).unwrap().as_secs() as f64
}
/// Sha256(Sha256(value))
pub fn double_sha256(payload: &[u8]) -> Vec<u8> {
let h1 = Sha256::digest(&payload);
let h2 = Sha256::digest(&h1);
h2.to_vec()
}
use base58::{ToBase58, FromBase58};
/// A trait for converting a [u8] to base58 encoded string.
pub trait ToBase58Check {
/// Converts a value of `self` to a base58 value, returning the owned string.
/// The version is a coin-specific prefix that is added.
/// The suffix is any bytes that we want to add at the end (like the "iscompressed" flag for
/// Secret key encoding)
fn to_base58check(&self, version: &[u8], suffix: &[u8]) -> String;
}
impl ToBase58Check for [u8] {
fn to_base58check(&self, version: &[u8], suffix: &[u8]) -> String {
let mut payload: Vec<u8> = Vec::new();
payload.extend_from_slice(version);
payload.extend_from_slice(self);
payload.extend_from_slice(suffix);
let mut checksum = double_sha256(&payload);
payload.append(&mut checksum[..4].to_vec());
payload.to_base58()
}
}
pub trait FromBase58Check {
fn from_base58check(&self, version: &[u8], suffix: &[u8]) -> Vec<u8>;
}
impl FromBase58Check for str {
fn from_base58check(&self, version: &[u8], suffix: &[u8]) -> Vec<u8> {
let mut payload: Vec<u8> = Vec::new();
let bytes = self.from_base58().unwrap();
let start = version.len();
let end = bytes.len() - (4 + suffix.len());
payload.extend(&bytes[start..end]);
payload
}
}
pub struct LightWallet {
seed: [u8; 32], // Seed phrase for this wallet.
// List of keys, actually in this wallet. This may include more
// than keys derived from the seed, for example, if user imports
// a private key
extsks: Vec<ExtendedSpendingKey>,
extfvks: Vec<ExtendedFullViewingKey>,
pub address: Vec<PaymentAddress<Bls12>>,
// Transparent keys. TODO: Make it not pubic
pub tkeys: Vec<secp256k1::SecretKey>,
blocks: Arc<RwLock<Vec<BlockData>>>,
pub txs: Arc<RwLock<HashMap<TxId, WalletTx>>>,
// The block at which this wallet was born. Rescans
// will start from here.
birthday: u64,
// Non-serialized fields
config: LightClientConfig,
}
impl LightWallet {
pub fn serialized_version() -> u64 {
return 2;
}
fn get_pk_from_bip39seed(bip39seed: &[u8]) ->
(ExtendedSpendingKey, ExtendedFullViewingKey, PaymentAddress<Bls12>) {
let extsk: ExtendedSpendingKey = ExtendedSpendingKey::from_path(
&ExtendedSpendingKey::master(bip39seed),
&[
ChildIndex::Hardened(32),
ChildIndex::Hardened(1), // TODO: Cointype should be 133 for mainnet
ChildIndex::Hardened(0)
],
);
let extfvk = ExtendedFullViewingKey::from(&extsk);
let address = extfvk.default_address().unwrap().1;
(extsk, extfvk, address)
}
pub fn new(seed_phrase: Option<String>, config: &LightClientConfig, latest_block: u64) -> io::Result<Self> {
use rand::{FromEntropy, ChaChaRng, Rng};
// This is the source entropy that corresponds to the 24-word seed phrase
let mut seed_bytes = [0u8; 32];
if seed_phrase.is_none() {
// Create a random seed.
let mut system_rng = ChaChaRng::from_entropy();
system_rng.fill(&mut seed_bytes);
} else {
seed_bytes.copy_from_slice(&Mnemonic::from_phrase(seed_phrase.expect("should have a seed phrase"),
Language::English).unwrap().entropy());
}
// The seed bytes is the raw entropy. To pass it to HD wallet generation,
// we need to get the 64 byte bip39 entropy
let bip39_seed = bip39::Seed::new(&Mnemonic::from_entropy(&seed_bytes, Language::English).unwrap(), "");
// TODO: This only reads one key for now
let ext_t_key = ExtendedPrivKey::with_seed(&bip39_seed.as_bytes()).unwrap();
let tpk = ext_t_key
.derive_private_key(KeyIndex::hardened_from_normalize_index(44).unwrap()).unwrap()
.derive_private_key(KeyIndex::hardened_from_normalize_index(1).unwrap()).unwrap() // TODO: Cointype
.derive_private_key(KeyIndex::hardened_from_normalize_index(0).unwrap()).unwrap()
.derive_private_key(KeyIndex::Normal(0)).unwrap()
.derive_private_key(KeyIndex::Normal(0)).unwrap()
.private_key;
// Derive only the first address
// TODO: We need to monitor addresses, and always keep 1 "free" address, so
// users can import a seed phrase and automatically get all used addresses
let (extsk, extfvk, address) = LightWallet::get_pk_from_bip39seed(&bip39_seed.as_bytes());
Ok(LightWallet {
seed: seed_bytes,
extsks: vec![extsk],
extfvks: vec![extfvk],
address: vec![address],
tkeys: vec![tpk],
blocks: Arc::new(RwLock::new(vec![])),
txs: Arc::new(RwLock::new(HashMap::new())),
config: config.clone(),
birthday: latest_block,
})
}
pub fn read<R: Read>(mut reader: R, config: &LightClientConfig) -> io::Result<Self> {
let version = reader.read_u64::<LittleEndian>()?;
assert!(version <= LightWallet::serialized_version());
info!("Reading wallet version {}", version);
// Seed
let mut seed_bytes = [0u8; 32];
reader.read_exact(&mut seed_bytes)?;
// Read the spending keys
let extsks = Vector::read(&mut reader, |r| ExtendedSpendingKey::read(r))?;
// Calculate the viewing keys
let extfvks = extsks.iter().map(|sk| ExtendedFullViewingKey::from(sk))
.collect::<Vec<ExtendedFullViewingKey>>();
// Calculate the addresses
let addresses = extfvks.iter().map( |fvk| fvk.default_address().unwrap().1 )
.collect::<Vec<PaymentAddress<Bls12>>>();
let mut tpk_bytes = [0u8; 32];
reader.read_exact(&mut tpk_bytes)?;
let tpk = secp256k1::SecretKey::from_slice(&tpk_bytes).unwrap();
let blocks = Vector::read(&mut reader, |r| BlockData::read(r))?;
let txs_tuples = Vector::read(&mut reader, |r| {
let mut txid_bytes = [0u8; 32];
r.read_exact(&mut txid_bytes)?;
Ok((TxId{0: txid_bytes}, WalletTx::read(r).unwrap()))
})?;
let txs = txs_tuples.into_iter().collect::<HashMap<TxId, WalletTx>>();
// chain_name was added in v2
if version >= 2 {
let chain_name = utils::read_string(&mut reader)?;
if chain_name != config.chain_name {
return Err(Error::new(ErrorKind::InvalidData,
format!("Wallet chain name {} doesn't match expected {}", chain_name, config.chain_name)));
}
}
let birthday = if version >= 2 {
reader.read_u64::<LittleEndian>()?
} else {
0
};
Ok(LightWallet{
seed: seed_bytes,
extsks,
extfvks,
address: addresses,
tkeys: vec![tpk],
blocks: Arc::new(RwLock::new(blocks)),
txs: Arc::new(RwLock::new(txs)),
config: config.clone(),
birthday,
})
}
pub fn write<W: Write>(&self, mut writer: W) -> io::Result<()> {
// Write the version
writer.write_u64::<LittleEndian>(LightWallet::serialized_version())?;
// Write the seed
writer.write_all(&self.seed)?;
// Write all the spending keys
Vector::write(&mut writer, &self.extsks,
|w, sk| sk.write(w)
)?;
// Write the transparent private key
// TODO: This only writes the first key for now
writer.write_all(&self.tkeys[0][..])?;
Vector::write(&mut writer, &self.blocks.read().unwrap(), |w, b| b.write(w))?;
// The hashmap, write as a set of tuples
Vector::write(&mut writer, &self.txs.read().unwrap().iter().collect::<Vec<(&TxId, &WalletTx)>>(),
|w, (k, v)| {
w.write_all(&k.0)?;
v.write(w)
})?;
utils::write_string(&mut writer, &self.config.chain_name)?;
// While writing the birthday, be sure that we're right, and that we don't
// have a tx that is before the current birthday
writer.write_u64::<LittleEndian>(self.get_birthday())?;
Ok(())
}
pub fn note_address(&self, note: &SaplingNoteData) -> Option<String> {
match note.extfvk.fvk.vk.into_payment_address(note.diversifier, &JUBJUB) {
Some(pa) => Some(encode_payment_address(self.config.hrp_sapling_address(), &pa)),
None => None
}
}
pub fn get_birthday(&self) -> u64 {
cmp::min(self.get_first_tx_block(), self.birthday)
}
// Get the first block that this wallet has a tx in. This is often used as the wallet's "birthday"
// If there are no Txns, then the actual birthday (which is recorder at wallet creation) is returned
// If no birthday was recorded, return the sapling activation height
pub fn get_first_tx_block(&self) -> u64 {
// Find the first transaction
let mut blocks = self.txs.read().unwrap().values()
.map(|wtx| wtx.block as u64)
.collect::<Vec<u64>>();
blocks.sort();
*blocks.first() // Returns optional
.unwrap_or(&cmp::max(self.birthday, self.config.sapling_activation_height))
}
// Get all z-address private keys. Returns a Vector of (address, privatekey)
pub fn get_z_private_keys(&self) -> Vec<(String, String)> {
self.extsks.iter().map(|sk| {
(encode_payment_address(self.config.hrp_sapling_address(),
&ExtendedFullViewingKey::from(sk).default_address().unwrap().1),
encode_extended_spending_key(self.config.hrp_sapling_private_key(), &sk)
)
}).collect::<Vec<(String, String)>>()
}
// Get all t-address private keys. Returns a Vector of (address, secretkey)
pub fn get_t_secret_keys(&self) -> Vec<(String, String)> {
self.tkeys.iter().map(|sk| {
(self.address_from_sk(sk), sk[..].to_base58check(&self.config.base58_secretkey_prefix(), &[0x01]))
}).collect::<Vec<(String, String)>>()
}
// Clears all the downloaded blocks and resets the state back to the inital block.
// After this, the wallet's initial state will need to be set
// and the wallet will need to be rescanned
pub fn clear_blocks(&self) {
self.blocks.write().unwrap().clear();
self.txs.write().unwrap().clear();
}
pub fn set_initial_block(&self, height: i32, hash: &str, sapling_tree: &str) -> bool {
let mut blocks = self.blocks.write().unwrap();
if !blocks.is_empty() {
return false;
}
let hash = match hex::decode(hash) {
Ok(hash) => {
let mut r = hash;
r.reverse();
BlockHash::from_slice(&r)
},
Err(e) => {
eprintln!("{}", e);
return false;
}
};
let sapling_tree = match hex::decode(sapling_tree) {
Ok(tree) => tree,
Err(e) => {
eprintln!("{}", e);
return false;
}
};
if let Ok(tree) = CommitmentTree::read(&sapling_tree[..]) {
blocks.push(BlockData { height, hash, tree });
true
} else {
false
}
}
// Get the latest sapling commitment tree. It will return the height and the hex-encoded sapling commitment tree at that height
pub fn get_sapling_tree(&self) -> Result<(i32, String, String), String> {
let blocks = self.blocks.read().unwrap();
let block = match blocks.last() {
Some(block) => block,
None => return Err("Couldn't get a block height!".to_string())
};
let mut write_buf = vec![];
block.tree.write(&mut write_buf).map_err(|e| format!("Error writing commitment tree {}", e))?;
let mut blockhash = vec![];
blockhash.extend_from_slice(&block.hash.0);
blockhash.reverse();
Ok((block.height, hex::encode(blockhash), hex::encode(write_buf)))
}
pub fn last_scanned_height(&self) -> i32 {
self.blocks.read().unwrap()
.last()
.map(|block| block.height)
.unwrap_or(self.config.sapling_activation_height as i32 - 1)
}
/// Determines the target height for a transaction, and the offset from which to
/// select anchors, based on the current synchronised block chain.
fn get_target_height_and_anchor_offset(&self) -> Option<(u32, usize)> {
match {
let blocks = self.blocks.read().unwrap();
(
blocks.first().map(|block| block.height as u32),
blocks.last().map(|block| block.height as u32),
)
} {
(Some(min_height), Some(max_height)) => {
let target_height = max_height + 1;
// Select an anchor ANCHOR_OFFSET back from the target block,
// unless that would be before the earliest block we have.
let anchor_height =
cmp::max(target_height.saturating_sub(ANCHOR_OFFSET), min_height);
Some((target_height, (target_height - anchor_height) as usize))
}
_ => None,
}
}
pub fn memo_str(memo: &Option<Memo>) -> Option<String> {
match memo {
Some(memo) => {
match memo.to_utf8() {
Some(Ok(memo_str)) => Some(memo_str),
_ => None
}
}
_ => None
}
}
pub fn address_from_sk(&self, sk: &secp256k1::SecretKey) -> String {
let secp = secp256k1::Secp256k1::new();
let pk = secp256k1::PublicKey::from_secret_key(&secp, &sk);
// Encode into t address
let mut hash160 = ripemd160::Ripemd160::new();
hash160.input(Sha256::digest(&pk.serialize()[..].to_vec()));
hash160.result().to_base58check(&self.config.base58_pubkey_address(), &[])
}
pub fn address_from_pubkeyhash(&self, ta: Option<TransparentAddress>) -> Option<String> {
match ta {
Some(TransparentAddress::PublicKey(hash)) => {
Some(hash.to_base58check(&self.config.base58_pubkey_address(), &[]))
},
Some(TransparentAddress::Script(hash)) => {
Some(hash.to_base58check(&self.config.base58_script_address(), &[]))
},
_ => None
}
}
pub fn get_seed_phrase(&self) -> String {
Mnemonic::from_entropy(&self.seed,
Language::English,
).unwrap().phrase().to_string()
}
pub fn zbalance(&self, addr: Option<String>) -> u64 {
self.txs.read().unwrap()
.values()
.map(|tx| {
tx.notes.iter()
.filter(|nd| { // TODO, this whole section is shared with verified_balance. Refactor it.
match addr.clone() {
Some(a) => a == encode_payment_address(
self.config.hrp_sapling_address(),
&nd.extfvk.fvk.vk
.into_payment_address(nd.diversifier, &JUBJUB).unwrap()
),
None => true
}
})
.map(|nd| if nd.spent.is_none() { nd.note.value } else { 0 })
.sum::<u64>()
})
.sum::<u64>()
}
// Get all (unspent) utxos. Unconfirmed spent utxos are included
pub fn get_utxos(&self) -> Vec<Utxo> {
let txs = self.txs.read().unwrap();
txs.values()
.flat_map(|tx| {
tx.utxos.iter().filter(|utxo| utxo.spent.is_none())
})
.map(|utxo| utxo.clone())
.collect::<Vec<Utxo>>()
}
pub fn tbalance(&self, addr: Option<String>) -> u64 {
self.get_utxos().iter()
.filter(|utxo| {
match addr.clone() {
Some(a) => utxo.address == a,
None => true,
}
})
.map(|utxo| utxo.value )
.sum::<u64>()
}
pub fn verified_zbalance(&self, addr: Option<String>) -> u64 {
let anchor_height = match self.get_target_height_and_anchor_offset() {
Some((height, anchor_offset)) => height - anchor_offset as u32,
None => return 0,
};
self.txs
.read()
.unwrap()
.values()
.map(|tx| {
if tx.block as u32 <= anchor_height {
tx.notes
.iter()
.filter(|nd| { // TODO, this whole section is shared with verified_balance. Refactor it.
match addr.clone() {
Some(a) => a == encode_payment_address(
self.config.hrp_sapling_address(),
&nd.extfvk.fvk.vk
.into_payment_address(nd.diversifier, &JUBJUB).unwrap()
),
None => true
}
})
.map(|nd| if nd.spent.is_none() && nd.unconfirmed_spent.is_none() { nd.note.value } else { 0 })
.sum::<u64>()
} else {
0
}
})
.sum::<u64>()
}
fn add_toutput_to_wtx(&self, height: i32, txid: &TxId, vout: &TxOut, n: u64) {
let mut txs = self.txs.write().unwrap();
// Find the existing transaction entry, or create a new one.
if !txs.contains_key(&txid) {
let tx_entry = WalletTx::new(height, &txid);
txs.insert(txid.clone(), tx_entry);
}
let tx_entry = txs.get_mut(&txid).unwrap();
// Make sure the vout isn't already there.
match tx_entry.utxos.iter().find(|utxo| {
utxo.txid == *txid && utxo.output_index == n && Amount::from_u64(utxo.value).unwrap() == vout.value
}) {
Some(utxo) => {
info!("Already have {}:{}", utxo.txid, utxo.output_index);
}
None => {
let address = self.address_from_pubkeyhash(vout.script_pubkey.address());
if address.is_none() {
println!("Couldn't determine address for output!");
}
info!("Added to wallet {}:{}", txid, n);
// Add the utxo
tx_entry.utxos.push(Utxo{
address: address.unwrap(),
txid: txid.clone(),
output_index: n,
script: vout.script_pubkey.0.clone(),
value: vout.value.into(),
height,
spent: None,
unconfirmed_spent: None,
});
}
}
}
// Scan the full Tx and update memos for incoming shielded transactions
pub fn scan_full_tx(&self, tx: &Transaction, height: i32) {
// Scan all the inputs to see if we spent any transparent funds in this tx
// TODO: Save this object
let secp = secp256k1::Secp256k1::new();
// TODO: Iterate over all transparent addresses. This is currently looking only at
// the first one.
let pubkey = secp256k1::PublicKey::from_secret_key(&secp, &self.tkeys[0]).serialize();
let mut total_transparent_spend: u64 = 0;
for vin in tx.vin.iter() {
// Find the txid in the list of utxos that we have.
let txid = TxId {0: vin.prevout.hash};
match self.txs.write().unwrap().get_mut(&txid) {
Some(wtx) => {
//println!("Looking for {}, {}", txid, vin.prevout.n);
// One of the tx outputs is a match
let spent_utxo = wtx.utxos.iter_mut()
.find(|u| u.txid == txid && u.output_index == (vin.prevout.n as u64));
match spent_utxo {
Some(su) => {
info!("Spent utxo from {} was spent in {}", txid, tx.txid());
su.spent = Some(tx.txid().clone());
su.unconfirmed_spent = None;
total_transparent_spend += su.value;
},
_ => {}
}
},
_ => {}
};
}
if total_transparent_spend > 0 {
// Update the WalletTx. Do it in a short scope because of the write lock.
let mut txs = self.txs.write().unwrap();
if !txs.contains_key(&tx.txid()) {
let tx_entry = WalletTx::new(height, &tx.txid());
txs.insert(tx.txid().clone(), tx_entry);
}
txs.get_mut(&tx.txid()).unwrap()
.total_transparent_value_spent = total_transparent_spend;
}
// Scan for t outputs
for (n, vout) in tx.vout.iter().enumerate() {
match vout.script_pubkey.address() {
Some(TransparentAddress::PublicKey(hash)) => {
if hash[..] == ripemd160::Ripemd160::digest(&Sha256::digest(&pubkey))[..] {
// This is our address. Add this as an output to the txid
self.add_toutput_to_wtx(height, &tx.txid(), &vout, n as u64);
}
},
_ => {}
}
}
// TODO: Scan t outputs if we spent t or z funds in this Tx, and add it to the
// outgoing metadata
{
let total_shielded_value_spent = self.txs.read().unwrap().get(&tx.txid()).map_or(0, |wtx| wtx.total_shielded_value_spent);
if total_transparent_spend + total_shielded_value_spent > 0 {
// We spent money in this Tx, so grab all the transparent outputs (except ours) and add them to the
// outgoing metadata
// Collect our t-addresses
let wallet_taddrs = self.tkeys.iter()
.map(|sk| self.address_from_sk(sk))
.collect::<HashSet<String>>();
for vout in tx.vout.iter() {
let taddr = self.address_from_pubkeyhash(vout.script_pubkey.address());
if taddr.is_some() && !wallet_taddrs.contains(&taddr.clone().unwrap()) {
let taddr = taddr.unwrap();
// Add it to outgoing metadata
let mut txs = self.txs.write().unwrap();
if txs.get(&tx.txid()).unwrap().outgoing_metadata.iter()
.find(|om|
om.address == taddr && Amount::from_u64(om.value).unwrap() == vout.value)
.is_some() {
warn!("Duplicate outgoing metadata");
continue;
}
// Write the outgoing metadata
txs.get_mut(&tx.txid()).unwrap()
.outgoing_metadata
.push(OutgoingTxMetadata{
address: taddr,
value: vout.value.into(),
memo: Memo::default(),
});
}
}
}
}
// Scan shielded sapling outputs to see if anyone of them is us, and if it is, extract the memo
for output in tx.shielded_outputs.iter() {
let ivks: Vec<_> = self.extfvks.iter().map(|extfvk| extfvk.fvk.vk.ivk()).collect();
let cmu = output.cmu;
let ct = output.enc_ciphertext;
// Search all of our keys
for (_account, ivk) in ivks.iter().enumerate() {
let epk_prime = output.ephemeral_key.as_prime_order(&JUBJUB).unwrap();
let (note, _to, memo) = match try_sapling_note_decryption(ivk, &epk_prime, &cmu, &ct) {
Some(ret) => ret,
None => continue,
};
{
info!("A sapling note was spent in {}", tx.txid());
// Update the WalletTx
// Do it in a short scope because of the write lock.
let mut txs = self.txs.write().unwrap();
txs.get_mut(&tx.txid()).unwrap()
.notes.iter_mut()
.find(|nd| nd.note == note).unwrap()
.memo = Some(memo);
}
}
// Also scan the output to see if it can be decoded with our OutgoingViewKey
// If it can, then we sent this transaction, so we should be able to get
// the memo and value for our records
// First, collect all our z addresses, to check for change
// Collect z addresses
let z_addresses = self.address.iter().map( |ad| {
encode_payment_address(self.config.hrp_sapling_address(), &ad)
}).collect::<HashSet<String>>();
// Search all ovks that we have
let ovks: Vec<_> = self.extfvks.iter().map(|extfvk| extfvk.fvk.ovk).collect();
for (_account, ovk) in ovks.iter().enumerate() {
match try_sapling_output_recovery(ovk,
&output.cv,
&output.cmu,
&output.ephemeral_key.as_prime_order(&JUBJUB).unwrap(),
&output.enc_ciphertext,
&output.out_ciphertext) {
Some((note, payment_address, memo)) => {
let address = encode_payment_address(self.config.hrp_sapling_address(),
&payment_address);
// Check if this is a change address
if z_addresses.contains(&address) {
continue;
}
// Update the WalletTx
info!("A sapling output was sent in {}", tx.txid());
{
// Do it in a short scope because of the write lock.
let mut txs = self.txs.write().unwrap();
if txs.get(&tx.txid()).unwrap().outgoing_metadata.iter()
.find(|om| om.address == address && om.value == note.value)
.is_some() {
warn!("Duplicate outgoing metadata");
continue;
}
// Write the outgoing metadata
txs.get_mut(&tx.txid()).unwrap()
.outgoing_metadata
.push(OutgoingTxMetadata{
address, value: note.value, memo,
});
}
},
None => {}
};
}
}
// Mark this Tx as scanned
{
let mut txs = self.txs.write().unwrap();
let mut wtx = txs.get_mut(&tx.txid()).unwrap();
wtx.full_tx_scanned = true;
}
}
// Invalidate all blocks including and after "at_height".
// Returns the number of blocks invalidated
pub fn invalidate_block(&self, at_height: i32) -> u64 {
let mut num_invalidated = 0;
// First remove the blocks
{
let mut blks = self.blocks.write().unwrap();
while blks.last().unwrap().height >= at_height {
blks.pop();
num_invalidated += 1;
}
}
// Next, remove transactions
{
let mut txs = self.txs.write().unwrap();
let txids_to_remove = txs.values()
.filter_map(|wtx| if wtx.block >= at_height {Some(wtx.txid.clone())} else {None})
.collect::<HashSet<TxId>>();
for txid in &txids_to_remove {
txs.remove(&txid);
}
// We also need to update any sapling note data and utxos in existing transactions that
// were spent in any of the txids that were removed
txs.values_mut()
.for_each(|wtx| {
wtx.notes.iter_mut()
.for_each(|nd| {
if nd.spent.is_some() && txids_to_remove.contains(&nd.spent.unwrap()) {
nd.spent = None;
}
if nd.unconfirmed_spent.is_some() && txids_to_remove.contains(&nd.spent.unwrap()) {
nd.unconfirmed_spent = None;
}
})
})
}
num_invalidated
}
// Scan a block. Will return an error with the block height that failed to scan
pub fn scan_block(&self, block: &[u8]) -> Result<(), i32> {
let block: CompactBlock = match parse_from_bytes(block) {
Ok(block) => block,
Err(e) => {
eprintln!("Could not parse CompactBlock from bytes: {}", e);
return Err(-1);
}
};
// Scanned blocks MUST be height-sequential.
let height = block.get_height() as i32;
if height == self.last_scanned_height() {
// If the last scanned block is rescanned, check it still matches.
if let Some(hash) = self.blocks.read().unwrap().last().map(|block| block.hash) {
if block.hash() != hash {
warn!("Likely reorg. Block hash does not match for block {}. {} vs {}", height, block.hash(), hash);
return Err(height);
}
}
return Ok(())
} else if height != (self.last_scanned_height() + 1) {
error!(
"Block is not height-sequential (expected {}, found {})",
self.last_scanned_height() + 1,
height
);
return Err(self.last_scanned_height());
}
// Check to see that the previous block hash matches
if let Some(hash) = self.blocks.read().unwrap().last().map(|block| block.hash) {
if block.prev_hash() != hash {
warn!("Likely reorg. Prev block hash does not match for block {}. {} vs {}", height, block.prev_hash(), hash);
return Err(height-1);
}
}
// Get the most recent scanned data.
let mut block_data = BlockData {
height,
hash: block.hash(),
tree: self
.blocks
.read()
.unwrap()
.last()
.map(|block| block.tree.clone())
.unwrap_or(CommitmentTree::new()),
};
// Create a write lock that will last for the rest of the function.
let mut txs = self.txs.write().unwrap();
// Create a Vec containing all unspent nullifiers.
// Include only the confirmed spent nullifiers, since unconfirmed ones still need to be included
// during scan_block below.
let nfs: Vec<_> = txs
.iter()
.map(|(txid, tx)| {
let txid = *txid;
tx.notes.iter().filter_map(move |nd| {
if nd.spent.is_none() {
Some((nd.nullifier, nd.account, txid))
} else {
None
}
})
})
.flatten()
.collect();
// Prepare the note witnesses for updating
for tx in txs.values_mut() {
for nd in tx.notes.iter_mut() {
// Duplicate the most recent witness
if let Some(witness) = nd.witnesses.last() {
let clone = witness.clone();
nd.witnesses.push(clone);
}
// Trim the oldest witnesses
nd.witnesses = nd
.witnesses
.split_off(nd.witnesses.len().saturating_sub(100));
}
}
let new_txs = {
let nf_refs: Vec<_> = nfs.iter().map(|(nf, acc, _)| (&nf[..], *acc)).collect();
// Create a single mutable slice of all the newly-added witnesses.
let mut witness_refs: Vec<_> = txs
.values_mut()
.map(|tx| tx.notes.iter_mut().filter_map(|nd| nd.witnesses.last_mut()))
.flatten()
.collect();
scan_block(
block,
&self.extfvks,
&nf_refs[..],
&mut block_data.tree,
&mut witness_refs[..],
)
};
for tx in new_txs {
// Mark notes as spent.
let mut total_shielded_value_spent: u64 = 0;
info!("Txid {} belongs to wallet", tx.txid);
for spend in &tx.shielded_spends {
let txid = nfs
.iter()
.find(|(nf, _, _)| &nf[..] == &spend.nf[..])
.unwrap()
.2;
let mut spent_note = txs
.get_mut(&txid)
.unwrap()
.notes
.iter_mut()
.find(|nd| &nd.nullifier[..] == &spend.nf[..])
.unwrap();
// Mark the note as spent, and remove the unconfirmed part of it
info!("Marked a note as spent");
spent_note.spent = Some(tx.txid);
spent_note.unconfirmed_spent = None::<TxId>;
total_shielded_value_spent += spent_note.note.value;
}
// Find the existing transaction entry, or create a new one.
if !txs.contains_key(&tx.txid) {
let tx_entry = WalletTx::new(block_data.height as i32, &tx.txid);
txs.insert(tx.txid, tx_entry);
}
let tx_entry = txs.get_mut(&tx.txid).unwrap();
tx_entry.total_shielded_value_spent = total_shielded_value_spent;
// Save notes.
for output in tx
.shielded_outputs
.into_iter()
{
info!("Received sapling output");
let new_note = SaplingNoteData::new(&self.extfvks[output.account], output);
match tx_entry.notes.iter().find(|nd| nd.nullifier == new_note.nullifier) {
None => tx_entry.notes.push(new_note),
Some(_) => warn!("Tried to insert duplicate note for Tx {}", tx.txid)
};
}
}
{
let mut blks = self.blocks.write().unwrap();
// Store scanned data for this block.
blks.push(block_data);
// Trim the old blocks, keeping only as many as needed for a worst-case reorg (i.e. 101 blocks)
let len = blks.len();
if len > MAX_REORG + 1 {
blks.drain(..(len-MAX_REORG+1));
}
}
// Print info about the block every 10,000 blocks
if height % 10_000 == 0 {
match self.get_sapling_tree() {
Ok((h, hash, stree)) => info!("Sapling tree at height {}/{} - {}", h, hash, stree),
Err(e) => error!("Couldn't determine sapling tree: {}", e)
}
}
Ok(())
}
pub fn send_to_address(
&self,
consensus_branch_id: u32,
spend_params: &[u8],
output_params: &[u8],
to: &str,
value: u64,
memo: Option<String>,
) -> Option<Box<[u8]>> {
let start_time = now();
println!(
"0: Creating transaction sending {} tazoshis to {}",
value,
to
);
// TODO: This only spends from the first address right now.
let extsk = &self.extsks[0];
let extfvk = &self.extfvks[0];
let ovk = extfvk.fvk.ovk;
let to = match address::RecipientAddress::from_str(to,
self.config.hrp_sapling_address(),
self.config.base58_pubkey_address(),
self.config.base58_script_address()) {
Some(to) => to,
None => {
eprintln!("Invalid recipient address");
return None;
}
};
let value = Amount::from_u64(value).unwrap();
// Target the next block, assuming we are up-to-date.
let (height, anchor_offset) = match self.get_target_height_and_anchor_offset() {
Some(res) => res,
None => {
eprintln!("Cannot send funds before scanning any blocks");
return None;
}
};
// Select notes to cover the target value
println!("{}: Selecting notes", now() - start_time);
let target_value = value + DEFAULT_FEE ;
let notes: Vec<_> = self.txs.read().unwrap().iter()
.map(|(txid, tx)| tx.notes.iter().map(move |note| (*txid, note)))
.flatten()
.filter_map(|(txid, note)| SpendableNote::from(txid, note, anchor_offset))
.scan(0, |running_total, spendable| {
let value = spendable.note.value;
let ret = if *running_total < u64::from(target_value) {
Some(spendable)
} else {
None
};
*running_total = *running_total + value;
ret
})
.collect();
let mut builder = Builder::new(height);
// A note on t addresses
// Funds recieved by t-addresses can't be explicitly spent in ZecWallet.
// ZecWallet will lazily consolidate all t address funds into your shielded addresses.
// Specifically, if you send an outgoing transaction that is sent to a shielded address,
// ZecWallet will add all your t-address funds into that transaction, and send them to your shielded
// address as change.
let tinputs = self.get_utxos().iter()
.filter(|utxo| utxo.unconfirmed_spent.is_none()) // Remove any unconfirmed spends
.map(|utxo| utxo.clone())
.collect::<Vec<Utxo>>();
if let Err(e) = match to {
address::RecipientAddress::Shielded(_) => {
// The destination is a sapling address, so add all transparent inputs
// TODO: This only spends from the first address right now.
let sk = self.tkeys[0];
// Add all tinputs
tinputs.iter()
.map(|utxo| {
let outpoint: OutPoint = utxo.to_outpoint();
let coin = TxOut {
value: Amount::from_u64(utxo.value).unwrap(),
script_pubkey: Script { 0: utxo.script.clone() },
};
builder.add_transparent_input(sk, outpoint.clone(), coin.clone())
})
.collect::<Result<Vec<_>, _>>()
},
_ => Ok(vec![])
} {
eprintln!("Error adding transparent inputs: {:?}", e);
return None;
}
// Confirm we were able to select sufficient value
let selected_value = notes.iter().map(|selected| selected.note.value).sum::<u64>()
+ tinputs.iter().map::<u64, _>(|utxo| utxo.value.into()).sum::<u64>();
if selected_value < u64::from(target_value) {
eprintln!(
"Insufficient funds (have {}, need {:?})",
selected_value, target_value
);
return None;
}
// Create the transaction
println!("{}: Adding {} notes and {} utxos", now() - start_time, notes.len(), tinputs.len());
for selected in notes.iter() {
if let Err(e) = builder.add_sapling_spend(
extsk.clone(),
selected.diversifier,
selected.note.clone(),
selected.witness.clone(),
) {
eprintln!("Error adding note: {:?}", e);
return None;
}
}
// Compute memo if it exists
let encoded_memo = memo.map(|s| Memo::from_str(&s).unwrap() );
println!("{}: Adding output", now() - start_time);
if let Err(e) = match to {
address::RecipientAddress::Shielded(to) => {
builder.add_sapling_output(ovk, to.clone(), value, encoded_memo)
}
address::RecipientAddress::Transparent(to) => {
builder.add_transparent_output(&to, value)
}
} {
eprintln!("Error adding output: {:?}", e);
return None;
}
println!("{}: Building transaction", now() - start_time);
let (tx, _) = match builder.build(
consensus_branch_id,
prover::InMemTxProver::new(spend_params, output_params),
) {
Ok(res) => res,
Err(e) => {
eprintln!("Error creating transaction: {:?}", e);
return None;
}
};
println!("{}: Transaction created", now() - start_time);
println!("Transaction ID: {}", tx.txid());
// Mark notes as spent.
{
// Mark sapling notes as unconfirmed spent
let mut txs = self.txs.write().unwrap();
for selected in notes {
let mut spent_note = txs.get_mut(&selected.txid).unwrap()
.notes.iter_mut()
.find(|nd| &nd.nullifier[..] == &selected.nullifier[..])
.unwrap();
spent_note.unconfirmed_spent = Some(tx.txid());
}
// Mark this utxo as unconfirmed spent
for utxo in tinputs {
let mut spent_utxo = txs.get_mut(&utxo.txid).unwrap().utxos.iter_mut()
.find(|u| utxo.txid == u.txid && utxo.output_index == u.output_index)
.unwrap();
spent_utxo.unconfirmed_spent = Some(tx.txid());
}
}
// Return the encoded transaction, so the caller can send it.
let mut raw_tx = vec![];
tx.write(&mut raw_tx).unwrap();
Some(raw_tx.into_boxed_slice())
}
}
#[cfg(test)]
pub mod tests {
use std::convert::TryInto;
use std::fs::File;
use std::io::{Read, Error, ErrorKind};
use ff::{Field, PrimeField, PrimeFieldRepr};
use pairing::bls12_381::Bls12;
use rand_core::{RngCore, OsRng};
use protobuf::{Message, UnknownFields, CachedSize, RepeatedField};
use zcash_client_backend::{encoding::encode_payment_address,
proto::compact_formats::{
CompactBlock, CompactOutput, CompactSpend, CompactTx,
}
};
use zcash_primitives::{
block::BlockHash,
jubjub::fs::Fs,
note_encryption::{Memo, SaplingNoteEncryption},
primitives::{Note, PaymentAddress},
legacy::{Script, TransparentAddress,},
transaction::{
TxId, Transaction, TransactionData,
components::{TxOut, TxIn, OutPoint, Amount,},
components::amount::DEFAULT_FEE,
},
zip32::{ExtendedFullViewingKey, ExtendedSpendingKey},
JUBJUB,
};
use sha2::{Sha256, Digest};
use super::LightWallet;
use crate::LightClientConfig;
use secp256k1::{Secp256k1, key::PublicKey, key::SecretKey};
use crate::SaplingParams;
fn get_sapling_params(config: &LightClientConfig) -> Result<(Vec<u8>, Vec<u8>), Error> {
// Read Sapling Params
let mut sapling_output = vec![];
sapling_output.extend_from_slice(SaplingParams::get("sapling-output.params").unwrap().as_ref());
println!("Read output {}", sapling_output.len());
let mut sapling_spend = vec![];
sapling_spend.extend_from_slice(SaplingParams::get("sapling-spend.params").unwrap().as_ref());
println!("Read output {}", sapling_spend.len());
Ok((sapling_spend, sapling_output))
}
struct FakeCompactBlock {
block: CompactBlock,
}
impl FakeCompactBlock {
fn new(height: i32, prev_hash: BlockHash) -> Self {
// Create a fake Note for the account
let mut rng = OsRng;
let mut cb = CompactBlock::new();
cb.set_height(height as u64);
cb.hash.resize(32, 0);
rng.fill_bytes(&mut cb.hash);
cb.prevHash.extend_from_slice(&prev_hash.0);
FakeCompactBlock { block: cb }
}
fn as_bytes(&self) -> Vec<u8> {
self.block.write_to_bytes().unwrap()
}
fn hash(&self) -> BlockHash {
BlockHash(self.block.hash[..].try_into().unwrap())
}
fn tx_to_compact_tx(tx: &Transaction, index: u64) -> CompactTx {
let spends = tx.shielded_spends.iter().map(|s| {
let mut c_spend = CompactSpend::default();
c_spend.set_nf(s.nullifier.to_vec());
c_spend
}).collect::<Vec<CompactSpend>>();
let outputs = tx.shielded_outputs.iter().map(|o| {
let mut c_out = CompactOutput::default();
let mut cmu_bytes = vec![];
o.cmu.into_repr().write_le(&mut cmu_bytes).unwrap();
let mut epk_bytes = vec![];
o.ephemeral_key.write(&mut epk_bytes).unwrap();
c_out.set_cmu(cmu_bytes);
c_out.set_epk(epk_bytes);
c_out.set_ciphertext(o.enc_ciphertext[0..52].to_vec());
c_out
}).collect::<Vec<CompactOutput>>();
CompactTx {
index,
hash: tx.txid().0.to_vec(),
fee: 0, // TODO: Get Fee
spends: RepeatedField::from_vec(spends),
outputs: RepeatedField::from_vec(outputs),
unknown_fields: UnknownFields::default(),
cached_size: CachedSize::default(),
}
}
// Convert the transaction into a CompactTx and add it to this block
fn add_tx(&mut self, tx: &Transaction) {
let ctx = FakeCompactBlock::tx_to_compact_tx(&tx, self.block.vtx.len() as u64);
self.block.vtx.push(ctx);
}
// Add a new tx into the block, paying the given address the amount.
// Returns the nullifier of the new note.
fn add_tx_paying(&mut self, extfvk: ExtendedFullViewingKey, value: u64)
-> (Vec<u8>, TxId) {
let to = extfvk.default_address().unwrap().1;
let value = Amount::from_u64(value).unwrap();
// Create a fake Note for the account
let mut rng = OsRng;
let note = Note {
g_d: to.diversifier.g_d::<Bls12>(&JUBJUB).unwrap(),
pk_d: to.pk_d.clone(),
value: value.into(),
r: Fs::random(&mut rng),
};
let encryptor = SaplingNoteEncryption::new(
extfvk.fvk.ovk,
note.clone(),
to.clone(),
Memo::default(),
&mut rng,
);
let mut cmu = vec![];
note.cm(&JUBJUB).into_repr().write_le(&mut cmu).unwrap();
let mut epk = vec![];
encryptor.epk().write(&mut epk).unwrap();
let enc_ciphertext = encryptor.encrypt_note_plaintext();
// Create a fake CompactBlock containing the note
let mut cout = CompactOutput::new();
cout.set_cmu(cmu);
cout.set_epk(epk);
cout.set_ciphertext(enc_ciphertext[..52].to_vec());
let mut ctx = CompactTx::new();
let mut txid = vec![0; 32];
rng.fill_bytes(&mut txid);
ctx.set_hash(txid.clone());
ctx.outputs.push(cout);
self.block.vtx.push(ctx);
(note.nf(&extfvk.fvk.vk, 0, &JUBJUB), TxId(txid[..].try_into().unwrap()))
}
fn add_tx_spending(&mut self,
(nf, in_value): (Vec<u8>, u64),
extfvk: ExtendedFullViewingKey,
to: PaymentAddress<Bls12>,
value: u64) -> TxId {
let mut rng = OsRng;
let in_value = Amount::from_u64(in_value).unwrap();
let value = Amount::from_u64(value).unwrap();
// Create a fake CompactBlock containing the note
let mut cspend = CompactSpend::new();
cspend.set_nf(nf);
let mut ctx = CompactTx::new();
let mut txid = vec![0; 32];
rng.fill_bytes(&mut txid);
ctx.set_hash(txid.clone());
ctx.spends.push(cspend);
// Create a fake Note for the payment
ctx.outputs.push({
let note = Note {
g_d: to.diversifier.g_d::<Bls12>(&JUBJUB).unwrap(),
pk_d: to.pk_d.clone(),
value: value.into(),
r: Fs::random(&mut rng),
};
let encryptor = SaplingNoteEncryption::new(
extfvk.fvk.ovk,
note.clone(),
to,
Memo::default(),
&mut rng,
);
let mut cmu = vec![];
note.cm(&JUBJUB).into_repr().write_le(&mut cmu).unwrap();
let mut epk = vec![];
encryptor.epk().write(&mut epk).unwrap();
let enc_ciphertext = encryptor.encrypt_note_plaintext();
let mut cout = CompactOutput::new();
cout.set_cmu(cmu);
cout.set_epk(epk);
cout.set_ciphertext(enc_ciphertext[..52].to_vec());
cout
});
// Create a fake Note for the change
ctx.outputs.push({
let change_addr = extfvk.default_address().unwrap().1;
let note = Note {
g_d: change_addr.diversifier.g_d::<Bls12>(&JUBJUB).unwrap(),
pk_d: change_addr.pk_d.clone(),
value: (in_value - value).into(),
r: Fs::random(&mut rng),
};
let encryptor = SaplingNoteEncryption::new(
extfvk.fvk.ovk,
note.clone(),
change_addr,
Memo::default(),
&mut rng,
);
let mut cmu = vec![];
note.cm(&JUBJUB).into_repr().write_le(&mut cmu).unwrap();
let mut epk = vec![];
encryptor.epk().write(&mut epk).unwrap();
let enc_ciphertext = encryptor.encrypt_note_plaintext();
let mut cout = CompactOutput::new();
cout.set_cmu(cmu);
cout.set_epk(epk);
cout.set_ciphertext(enc_ciphertext[..52].to_vec());
cout
});
self.block.vtx.push(ctx);
TxId(txid[..].try_into().unwrap())
}
}
struct FakeTransaction {
tx: Transaction,
}
impl FakeTransaction {
// New FakeTransaction with random txid
fn new<R: RngCore>(rng: &mut R) -> Self {
let mut txid = [0u8; 32];
rng.fill_bytes(&mut txid);
FakeTransaction::new_with_txid(TxId(txid))
}
fn new_with_txid(txid: TxId) -> Self {
FakeTransaction {
tx: Transaction {
txid,
data: TransactionData::new()
}
}
}
fn get_tx(&self) -> &Transaction {
&self.tx
}
fn add_t_output(&mut self, pk: &PublicKey, value: u64) {
let mut hash160 = ripemd160::Ripemd160::new();
hash160.input(Sha256::digest(&pk.serialize()[..].to_vec()));
let taddr_bytes = hash160.result();
self.tx.data.vout.push(TxOut {
value: Amount::from_u64(value).unwrap(),
script_pubkey: TransparentAddress::PublicKey(taddr_bytes.try_into().unwrap()).script(),
});
}
fn add_t_input(&mut self, txid: TxId, n: u32) {
self.tx.data.vin.push(TxIn {
prevout: OutPoint{
hash: txid.0,
n
},
script_sig: Script{0: vec![]},
sequence: 0,
});
}
}
#[test]
fn z_balances() {
let wallet = LightWallet::new(None, &get_test_config(), 0).unwrap();
const AMOUNT1:u64 = 5;
// Address is encoded in bech32
let address = Some(encode_payment_address(wallet.config.hrp_sapling_address(),
&wallet.extfvks[0].default_address().unwrap().1));
let mut cb1 = FakeCompactBlock::new(0, BlockHash([0; 32]));
cb1.add_tx_paying(wallet.extfvks[0].clone(), AMOUNT1);
// Make sure that the intial state is empty
assert_eq!(wallet.txs.read().unwrap().len(), 0);
assert_eq!(wallet.blocks.read().unwrap().len(), 0);
assert_eq!(wallet.zbalance(None), 0);
assert_eq!(wallet.zbalance(address.clone()), 0);
wallet.scan_block(&cb1.as_bytes()).unwrap();
assert_eq!(wallet.txs.read().unwrap().len(), 1);
assert_eq!(wallet.blocks.read().unwrap().len(), 1);
assert_eq!(wallet.zbalance(None), AMOUNT1);
assert_eq!(wallet.zbalance(address.clone()), AMOUNT1);
const AMOUNT2:u64 = 10;
// Add a second block
let mut cb2 = FakeCompactBlock::new(1, cb1.hash());
cb2.add_tx_paying(wallet.extfvks[0].clone(), AMOUNT2);
wallet.scan_block(&cb2.as_bytes()).unwrap();
assert_eq!(wallet.txs.read().unwrap().len(), 2);
assert_eq!(wallet.blocks.read().unwrap().len(), 2);
assert_eq!(wallet.zbalance(None), AMOUNT1 + AMOUNT2);
assert_eq!(wallet.zbalance(address.clone()), AMOUNT1 + AMOUNT2);
}
#[test]
fn z_change_balances() {
let wallet = LightWallet::new(None, &get_test_config(), 0).unwrap();
// First, add an incoming transaction
const AMOUNT1:u64 = 5;
let mut cb1 = FakeCompactBlock::new(0, BlockHash([0; 32]));
let (nf1, txid1) = cb1.add_tx_paying(wallet.extfvks[0].clone(), AMOUNT1);
wallet.scan_block(&cb1.as_bytes()).unwrap();
assert_eq!(wallet.txs.read().unwrap().len(), 1);
assert_eq!(wallet.blocks.read().unwrap().len(), 1);
assert_eq!(wallet.zbalance(None), AMOUNT1);
const AMOUNT2:u64 = 2;
// Add a second block, spending the first note
let addr2 = ExtendedFullViewingKey::from(&ExtendedSpendingKey::master(&[0u8; 32]))
.default_address().unwrap().1;
let mut cb2 = FakeCompactBlock::new(1, cb1.hash());
let txid2 = cb2.add_tx_spending((nf1, AMOUNT1), wallet.extfvks[0].clone(), addr2, AMOUNT2);
wallet.scan_block(&cb2.as_bytes()).unwrap();
// Now, the original note should be spent and there should be a change
assert_eq!(wallet.zbalance(None), AMOUNT1 - AMOUNT2);
let txs = wallet.txs.read().unwrap();
// Old note was spent
assert_eq!(txs[&txid1].txid, txid1);
assert_eq!(txs[&txid1].notes.len(), 1);
assert_eq!(txs[&txid1].notes[0].spent.unwrap(), txid2);
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT1);
assert_eq!(txs[&txid1].notes[0].is_change, false);
// new note is not spent
assert_eq!(txs[&txid2].txid, txid2);
assert_eq!(txs[&txid2].notes.len(), 1);
assert_eq!(txs[&txid2].notes[0].spent, None);
assert_eq!(txs[&txid2].notes[0].note.value, AMOUNT1 - AMOUNT2);
assert_eq!(txs[&txid2].notes[0].is_change, true);
assert_eq!(txs[&txid2].total_shielded_value_spent, AMOUNT1);
}
#[test]
fn test_t_receive_spend() {
let mut rng = OsRng;
let secp = Secp256k1::new();
let wallet = LightWallet::new(None, &get_test_config(), 0).unwrap();
let pk = PublicKey::from_secret_key(&secp, &wallet.tkeys[0]);
let taddr = wallet.address_from_sk(&wallet.tkeys[0]);
const AMOUNT1: u64 = 20;
let mut tx = FakeTransaction::new(&mut rng);
tx.add_t_output(&pk, AMOUNT1);
let txid1 = tx.get_tx().txid();
wallet.scan_full_tx(&tx.get_tx(), 100); // Pretend it is at height 100
{
let txs = wallet.txs.read().unwrap();
// Now make sure the t addr was recieved
assert_eq!(txs.len(), 1);
assert_eq!(txs[&txid1].utxos.len(), 1);
assert_eq!(txs[&txid1].utxos[0].address, taddr);
assert_eq!(txs[&txid1].utxos[0].txid, txid1);
assert_eq!(txs[&txid1].utxos[0].output_index, 0);
assert_eq!(txs[&txid1].utxos[0].value, AMOUNT1);
assert_eq!(txs[&txid1].utxos[0].height, 100);
assert_eq!(txs[&txid1].utxos[0].spent, None);
assert_eq!(txs[&txid1].utxos[0].unconfirmed_spent, None);
assert_eq!(wallet.tbalance(None), AMOUNT1);
assert_eq!(wallet.tbalance(Some(taddr)), AMOUNT1);
}
// Create a new Tx, spending this taddr
let mut tx = FakeTransaction::new(&mut rng);
tx.add_t_input(txid1, 0);
let txid2 = tx.get_tx().txid();
wallet.scan_full_tx(&tx.get_tx(), 101); // Pretent it is at height 101
{
// Make sure the txid was spent
let txs = wallet.txs.read().unwrap();
// Old utxo, that should be spent now
assert_eq!(txs.len(), 2);
assert_eq!(txs[&txid1].utxos.len(), 1);
assert_eq!(txs[&txid1].utxos[0].value, AMOUNT1);
assert_eq!(txs[&txid1].utxos[0].spent, Some(txid2));
assert_eq!(txs[&txid1].utxos[0].unconfirmed_spent, None);
assert_eq!(txs[&txid2].block, 101); // The second TxId is at block 101
assert_eq!(txs[&txid2].utxos.len(), 0); // The second TxId has no UTXOs
assert_eq!(txs[&txid2].total_transparent_value_spent, AMOUNT1);
// Make sure there is no t-ZEC left
assert_eq!(wallet.tbalance(None), 0);
}
}
#[test]
/// This test spends and receives t addresses among non-wallet t addresses to make sure that
/// we're detecting and spending only our t addrs.
fn test_t_receive_spend_among_tadds() {
let mut rng = OsRng;
let secp = Secp256k1::new();
let wallet = LightWallet::new(None, &get_test_config(), 0).unwrap();
let pk = PublicKey::from_secret_key(&secp, &wallet.tkeys[0]);
let taddr = wallet.address_from_sk(&wallet.tkeys[0]);
let non_wallet_sk = &SecretKey::from_slice(&[1u8; 32]).unwrap();
let non_wallet_pk = PublicKey::from_secret_key(&secp, &non_wallet_sk);
const AMOUNT1: u64 = 30;
let mut tx = FakeTransaction::new(&mut rng);
// Add a non-wallet output
tx.add_t_output(&non_wallet_pk, 20);
tx.add_t_output(&pk, AMOUNT1); // Our wallet t output
tx.add_t_output(&non_wallet_pk, 25);
let txid1 = tx.get_tx().txid();
wallet.scan_full_tx(&tx.get_tx(), 100); // Pretend it is at height 100
{
let txs = wallet.txs.read().unwrap();
// Now make sure the t addr was received
assert_eq!(txs.len(), 1);
assert_eq!(txs[&txid1].utxos.len(), 1);
assert_eq!(txs[&txid1].utxos[0].address, taddr);
assert_eq!(txs[&txid1].utxos[0].txid, txid1);
assert_eq!(txs[&txid1].utxos[0].output_index, 1);
assert_eq!(txs[&txid1].utxos[0].value, AMOUNT1);
assert_eq!(txs[&txid1].utxos[0].height, 100);
assert_eq!(txs[&txid1].utxos[0].spent, None);
assert_eq!(txs[&txid1].utxos[0].unconfirmed_spent, None);
assert_eq!(wallet.tbalance(None), AMOUNT1);
assert_eq!(wallet.tbalance(Some(taddr)), AMOUNT1);
}
// Create a new Tx, spending this taddr
let mut tx = FakeTransaction::new(&mut rng);
tx.add_t_input(txid1, 1); // Ours was at position 1 in the input tx
let txid2 = tx.get_tx().txid();
wallet.scan_full_tx(&tx.get_tx(), 101); // Pretent it is at height 101
{
// Make sure the txid was spent
let txs = wallet.txs.read().unwrap();
// Old utxo, that should be spent now
assert_eq!(txs.len(), 2);
assert_eq!(txs[&txid1].utxos.len(), 1);
assert_eq!(txs[&txid1].utxos[0].value, AMOUNT1);
assert_eq!(txs[&txid1].utxos[0].spent, Some(txid2));
assert_eq!(txs[&txid1].utxos[0].unconfirmed_spent, None);
assert_eq!(txs[&txid2].block, 101); // The second TxId is at block 101
assert_eq!(txs[&txid2].utxos.len(), 0); // The second TxId has no UTXOs
assert_eq!(txs[&txid2].total_transparent_value_spent, AMOUNT1);
// Make sure there is no t-ZEC left
assert_eq!(wallet.tbalance(None), 0);
}
}
#[test]
fn test_serialization() {
let secp = Secp256k1::new();
let config = get_test_config();
let wallet = LightWallet::new(None, &config, 0).unwrap();
// First, add an incoming transaction
const AMOUNT1:u64 = 5;
let mut cb1 = FakeCompactBlock::new(0, BlockHash([0; 32]));
let (nf1, txid1) = cb1.add_tx_paying(wallet.extfvks[0].clone(), AMOUNT1);
wallet.scan_block(&cb1.as_bytes()).unwrap();
assert_eq!(wallet.txs.read().unwrap().len(), 1);
assert_eq!(wallet.blocks.read().unwrap().len(), 1);
assert_eq!(wallet.zbalance(None), AMOUNT1);
// Add a t input at the Tx
let pk = PublicKey::from_secret_key(&secp, &wallet.tkeys[0]);
let taddr = wallet.address_from_sk(&wallet.tkeys[0]);
const TAMOUNT1: u64 = 20;
let mut tx = FakeTransaction::new_with_txid(txid1);
tx.add_t_output(&pk, TAMOUNT1);
wallet.scan_full_tx(&tx.get_tx(), 0); // Height 0
const AMOUNT2:u64 = 2;
// Add a second block, spending the first note
let addr2 = ExtendedFullViewingKey::from(&ExtendedSpendingKey::master(&[0u8; 32]))
.default_address().unwrap().1;
let mut cb2 = FakeCompactBlock::new(1, cb1.hash());
let txid2 = cb2.add_tx_spending((nf1, AMOUNT1), wallet.extfvks[0].clone(), addr2, AMOUNT2);
wallet.scan_block(&cb2.as_bytes()).unwrap();
let mut tx = FakeTransaction::new_with_txid(txid2);
tx.add_t_input(txid1, 0);
wallet.scan_full_tx(&tx.get_tx(), 1); // Height 1
// Now, the original note should be spent and there should be a change
assert_eq!(wallet.zbalance(None), AMOUNT1 - AMOUNT2 ); // The t addr amount is received + spent, so it cancels out
// Now, serialize the wallet and read it back again
let mut serialized_data = vec![];
wallet.write(&mut serialized_data).expect("Serialize wallet");
let wallet2 = LightWallet::read(&serialized_data[..], &config).unwrap();
assert_eq!(wallet2.zbalance(None), AMOUNT1 - AMOUNT2);
// Test the keys were serialized correctly
{
assert_eq!(wallet.seed, wallet2.seed);
assert_eq!(wallet.extsks.len(), wallet2.extsks.len());
assert_eq!(wallet.extsks[0], wallet2.extsks[0]);
assert_eq!(wallet.extfvks[0], wallet2.extfvks[0]);
assert_eq!(wallet.address[0], wallet2.address[0]);
assert_eq!(wallet.tkeys.len(), wallet2.tkeys.len());
assert_eq!(wallet.tkeys[0], wallet2.tkeys[0]);
}
// Test blocks were serialized properly
{
let blks = wallet2.blocks.read().unwrap();
assert_eq!(blks.len(), 2);
assert_eq!(blks[0].height, 0);
assert_eq!(blks[1].height, 1);
}
// Test txns were serialized properly.
{
let txs = wallet2.txs.read().unwrap();
// Old note was spent
assert_eq!(txs[&txid1].txid, txid1);
assert_eq!(txs[&txid1].notes.len(), 1);
assert_eq!(txs[&txid1].notes[0].spent.unwrap(), txid2);
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT1);
assert_eq!(txs[&txid1].notes[0].is_change, false);
// Old UTXO was spent
assert_eq!(txs[&txid1].utxos.len(), 1);
assert_eq!(txs[&txid1].utxos[0].address, taddr);
assert_eq!(txs[&txid1].utxos[0].txid, txid1);
assert_eq!(txs[&txid1].utxos[0].output_index, 0);
assert_eq!(txs[&txid1].utxos[0].value, TAMOUNT1);
assert_eq!(txs[&txid1].utxos[0].height, 0);
assert_eq!(txs[&txid1].utxos[0].spent, Some(txid2));
assert_eq!(txs[&txid1].utxos[0].unconfirmed_spent, None);
// new note is not spent
assert_eq!(txs[&txid2].txid, txid2);
assert_eq!(txs[&txid2].notes.len(), 1);
assert_eq!(txs[&txid2].notes[0].spent, None);
assert_eq!(txs[&txid2].notes[0].note.value, AMOUNT1 - AMOUNT2);
assert_eq!(txs[&txid2].notes[0].is_change, true);
assert_eq!(txs[&txid2].total_shielded_value_spent, AMOUNT1);
// The UTXO was spent in txid2
assert_eq!(txs[&txid2].utxos.len(), 0); // The second TxId has no UTXOs
assert_eq!(txs[&txid2].total_transparent_value_spent, TAMOUNT1);
}
}
fn get_test_config() -> LightClientConfig {
LightClientConfig {
server: "0.0.0.0:0".parse().unwrap(),
chain_name: "test".to_string(),
sapling_activation_height: 0,
consensus_branch_id: "000000".to_string(),
}
}
// Get a test wallet already setup with a single note
fn get_test_wallet(amount: u64) -> (LightWallet, LightClientConfig, TxId, BlockHash) {
let config = get_test_config();
let wallet = LightWallet::new(None, &config, 0).unwrap();
let mut cb1 = FakeCompactBlock::new(0, BlockHash([0; 32]));
let (_, txid1) = cb1.add_tx_paying(wallet.extfvks[0].clone(), amount);
wallet.scan_block(&cb1.as_bytes()).unwrap();
// We have one note
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&txid1].notes.len(), 1);
assert_eq!(txs[&txid1].notes[0].note.value, amount);
assert_eq!(txs[&txid1].notes[0].spent, None);
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, None);
}
assert_eq!(wallet.verified_zbalance(None), amount);
// Create a new block so that the note is now verified to be spent
let cb2 = FakeCompactBlock::new(1, cb1.hash());
wallet.scan_block(&cb2.as_bytes()).unwrap();
(wallet, config, txid1, cb2.hash())
}
#[test]
fn test_z_spend() {
const AMOUNT1: u64 = 50000;
let (wallet, config, txid1, block_hash) = get_test_wallet(AMOUNT1);
let fvk = ExtendedFullViewingKey::from(&ExtendedSpendingKey::master(&[1u8; 32]));
let ext_address = encode_payment_address(wallet.config.hrp_sapling_address(),
&fvk.default_address().unwrap().1);
const AMOUNT_SENT: u64 = 20;
let outgoing_memo = "Outgoing Memo".to_string();
let fee: u64 = DEFAULT_FEE.try_into().unwrap();
let branch_id = u32::from_str_radix("2bb40e60", 16).unwrap();
let (ss, so) = get_sapling_params(&config).unwrap();
// Create a tx and send to address
let raw_tx = wallet.send_to_address(branch_id, &ss, &so,
&ext_address, AMOUNT_SENT, Some(outgoing_memo.clone())).unwrap();
let sent_tx = Transaction::read(&raw_tx[..]).unwrap();
let sent_txid = sent_tx.txid();
// Now, the note should be unconfirmed spent
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT1);
assert_eq!(txs[&txid1].notes[0].is_change, false);
assert_eq!(txs[&txid1].notes[0].spent, None);
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, Some(sent_txid));
}
let mut cb3 = FakeCompactBlock::new(2, block_hash);
cb3.add_tx(&sent_tx);
wallet.scan_block(&cb3.as_bytes()).unwrap();
// Now this new Spent tx should be in, so the note should be marked confirmed spent
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&txid1].notes.len(), 1);
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT1);
assert_eq!(txs[&txid1].notes[0].spent, Some(sent_txid));
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, None);
// The sent tx should generate change
assert_eq!(txs[&sent_txid].notes.len(), 1);
assert_eq!(txs[&sent_txid].notes[0].note.value, AMOUNT1 - AMOUNT_SENT - fee);
assert_eq!(txs[&sent_txid].notes[0].is_change, true);
assert_eq!(txs[&sent_txid].notes[0].spent, None);
assert_eq!(txs[&sent_txid].notes[0].unconfirmed_spent, None);
}
// Now, full scan the Tx, which should populate the Outgoing Meta data
wallet.scan_full_tx(&sent_tx, 2);
// Check Outgoing Metadata
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&sent_txid].total_shielded_value_spent, AMOUNT1);
assert_eq!(txs[&sent_txid].outgoing_metadata.len(), 1);
assert_eq!(txs[&sent_txid].outgoing_metadata[0].address, ext_address);
assert_eq!(txs[&sent_txid].outgoing_metadata[0].value, AMOUNT_SENT);
assert_eq!(txs[&sent_txid].outgoing_metadata[0].memo.to_utf8().unwrap().unwrap(), outgoing_memo);
}
}
#[test]
fn test_z_spend_to_taddr() {
const AMOUNT1: u64 = 50000;
let (wallet, config, txid1, block_hash) = get_test_wallet(AMOUNT1);
let branch_id = u32::from_str_radix("2bb40e60", 16).unwrap();
let (ss, so) = get_sapling_params(&config).unwrap();
let taddr = wallet.address_from_sk(&SecretKey::from_slice(&[1u8; 32]).unwrap());
const AMOUNT_SENT: u64 = 30;
let fee: u64 = DEFAULT_FEE.try_into().unwrap();
let raw_tx = wallet.send_to_address(branch_id, &ss, &so,
&taddr, AMOUNT_SENT, None).unwrap();
let sent_tx = Transaction::read(&raw_tx[..]).unwrap();
let sent_txid = sent_tx.txid();
// Now, the note should be unconfirmed spent
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT1);
assert_eq!(txs[&txid1].notes[0].is_change, false);
assert_eq!(txs[&txid1].notes[0].spent, None);
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, Some(sent_txid));
}
let mut cb3 = FakeCompactBlock::new(2, block_hash);
cb3.add_tx(&sent_tx);
wallet.scan_block(&cb3.as_bytes()).unwrap();
// Now this new Spent tx should be in, so the note should be marked confirmed spent
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&txid1].notes.len(), 1);
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT1);
assert_eq!(txs[&txid1].notes[0].spent, Some(sent_txid));
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, None);
// The sent tx should generate change
assert_eq!(txs[&sent_txid].notes.len(), 1);
assert_eq!(txs[&sent_txid].notes[0].note.value, AMOUNT1 - AMOUNT_SENT - fee);
assert_eq!(txs[&sent_txid].notes[0].is_change, true);
assert_eq!(txs[&sent_txid].notes[0].spent, None);
assert_eq!(txs[&sent_txid].notes[0].unconfirmed_spent, None);
}
// Now, full scan the Tx, which should populate the Outgoing Meta data
wallet.scan_full_tx(&sent_tx, 2);
// Check Outgoing Metadata for t address
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&sent_txid].outgoing_metadata.len(), 1);
assert_eq!(txs[&sent_txid].outgoing_metadata[0].address, taddr);
assert_eq!(txs[&sent_txid].outgoing_metadata[0].value, AMOUNT_SENT);
assert_eq!(txs[&sent_txid].total_shielded_value_spent, AMOUNT1);
}
}
#[test]
fn test_t_spend_to_z() {
let mut rng = OsRng;
let secp = Secp256k1::new();
const AMOUNT_Z: u64 = 50000;
const AMOUNT_T: u64 = 40000;
let (wallet, config, txid1, block_hash) = get_test_wallet(AMOUNT_Z);
let pk = PublicKey::from_secret_key(&secp, &wallet.tkeys[0]);
let taddr = wallet.address_from_sk(&wallet.tkeys[0]);
let mut tx = FakeTransaction::new(&mut rng);
tx.add_t_output(&pk, AMOUNT_T);
let txid_t = tx.get_tx().txid();
wallet.scan_full_tx(&tx.get_tx(), 1); // Pretend it is at height 1
{
let txs = wallet.txs.read().unwrap();
// Now make sure the t addr was recieved
assert_eq!(txs[&txid_t].utxos.len(), 1);
assert_eq!(txs[&txid_t].utxos[0].address, taddr);
assert_eq!(txs[&txid_t].utxos[0].spent, None);
assert_eq!(txs[&txid_t].utxos[0].unconfirmed_spent, None);
assert_eq!(wallet.tbalance(None), AMOUNT_T);
}
let fvk = ExtendedFullViewingKey::from(&ExtendedSpendingKey::master(&[1u8; 32]));
let ext_address = encode_payment_address(wallet.config.hrp_sapling_address(),
&fvk.default_address().unwrap().1);
const AMOUNT_SENT: u64 = 20;
let outgoing_memo = "Outgoing Memo".to_string();
let fee: u64 = DEFAULT_FEE.try_into().unwrap();
let branch_id = u32::from_str_radix("2bb40e60", 16).unwrap();
let (ss, so) = get_sapling_params(&config).unwrap();
// Create a tx and send to address. This should consume both the UTXO and the note
let raw_tx = wallet.send_to_address(branch_id, &ss, &so,
&ext_address, AMOUNT_SENT, Some(outgoing_memo.clone())).unwrap();
let sent_tx = Transaction::read(&raw_tx[..]).unwrap();
let sent_txid = sent_tx.txid();
// Verify the sent_tx for sanity
{
// The tx has 1 note spent, 1 utxo spent, and (1 note out, 1 note change)
assert_eq!(sent_tx.shielded_spends.len(), 1);
assert_eq!(sent_tx.vin.len(), 1);
assert_eq!(sent_tx.shielded_outputs.len(), 2);
}
// Now, the note and utxo should be unconfirmed spent
{
let txs = wallet.txs.read().unwrap();
// UTXO
assert_eq!(txs[&txid_t].utxos.len(), 1);
assert_eq!(txs[&txid_t].utxos[0].address, taddr);
assert_eq!(txs[&txid_t].utxos[0].spent, None);
assert_eq!(txs[&txid_t].utxos[0].unconfirmed_spent, Some(sent_txid));
// Note
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT_Z);
assert_eq!(txs[&txid1].notes[0].spent, None);
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, Some(sent_txid));
}
let mut cb3 = FakeCompactBlock::new(2, block_hash);
cb3.add_tx(&sent_tx);
// Scan the compact block and the full Tx
wallet.scan_block(&cb3.as_bytes()).unwrap();
wallet.scan_full_tx(&sent_tx, 2);
// Now this new Spent tx should be in, so the note should be marked confirmed spent
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&txid1].notes.len(), 1);
assert_eq!(txs[&txid1].notes[0].note.value, AMOUNT_Z);
assert_eq!(txs[&txid1].notes[0].spent, Some(sent_txid));
assert_eq!(txs[&txid1].notes[0].unconfirmed_spent, None);
// The UTXO should also be spent
assert_eq!(txs[&txid_t].utxos[0].address, taddr);
assert_eq!(txs[&txid_t].utxos[0].spent, Some(sent_txid));
assert_eq!(txs[&txid_t].utxos[0].unconfirmed_spent, None);
// The sent tx should generate change
assert_eq!(txs[&sent_txid].notes.len(), 1);
assert_eq!(txs[&sent_txid].notes[0].note.value, AMOUNT_Z + AMOUNT_T - AMOUNT_SENT - fee);
assert_eq!(txs[&sent_txid].notes[0].is_change, true);
assert_eq!(txs[&sent_txid].notes[0].spent, None);
assert_eq!(txs[&sent_txid].notes[0].unconfirmed_spent, None);
}
}
#[test]
fn test_z_incoming_memo() {
const AMOUNT1: u64 = 50000;
let (wallet, config, _txid1, block_hash) = get_test_wallet(AMOUNT1);
let my_address = encode_payment_address(wallet.config.hrp_sapling_address(),
&wallet.extfvks[0].default_address().unwrap().1);
let memo = "Incoming Memo".to_string();
let fee: u64 = DEFAULT_FEE.try_into().unwrap();
let branch_id = u32::from_str_radix("2bb40e60", 16).unwrap();
let (ss, so) = get_sapling_params(&config).unwrap();
// Create a tx and send to address
let raw_tx = wallet.send_to_address(branch_id, &ss, &so,
&my_address, AMOUNT1 - fee, Some(memo.clone())).unwrap();
let sent_tx = Transaction::read(&raw_tx[..]).unwrap();
let sent_txid = sent_tx.txid();
// Add it to a block
let mut cb3 = FakeCompactBlock::new(2, block_hash);
cb3.add_tx(&sent_tx);
wallet.scan_block(&cb3.as_bytes()).unwrap();
// And scan the Full Tx to get the memo
wallet.scan_full_tx(&sent_tx, 2);
{
let txs = wallet.txs.read().unwrap();
assert_eq!(txs[&sent_txid].notes.len(), 1);
assert_eq!(txs[&sent_txid].notes[0].extfvk, wallet.extfvks[0]);
assert_eq!(txs[&sent_txid].notes[0].note.value, AMOUNT1 - fee);
assert_eq!(LightWallet::memo_str(&txs[&sent_txid].notes[0].memo), Some(memo));
}
}
}