Hush Full Node software. We were censored from Github, this is where all development happens now. https://hush.is
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2949 lines
95 KiB

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Copyright (c) 2016-2024 The Hush developers
// Distributed under the GPLv3 software license, see the accompanying
// file COPYING or https://www.gnu.org/licenses/gpl-3.0.en.html
/******************************************************************************
* Copyright © 2014-2019 The SuperNET Developers. *
* *
* See the AUTHORS, DEVELOPER-AGREEMENT and LICENSE files at *
* the top-level directory of this distribution for the individual copyright *
* holder information and the developer policies on copyright and licensing. *
* *
* Unless otherwise agreed in a custom licensing agreement, no part of the *
* SuperNET software, including this file may be copied, modified, propagated *
* or distributed except according to the terms contained in the LICENSE file *
* *
* Removal or modification of this copyright notice is prohibited. *
* *
******************************************************************************/
#if defined(HAVE_CONFIG_H)
#include "config/bitcoin-config.h"
#endif
#include "main.h"
#include "net.h"
#include "init.h"
#include "addrman.h"
#include "chainparams.h"
#include "clientversion.h"
#include "primitives/transaction.h"
#include "scheduler.h"
#include "ui_interface.h"
#include "crypto/common.h"
#include "hush/utiltls.h"
#include <random.h>
#ifdef _WIN32
#include <string.h>
#else
#include <fcntl.h>
#endif
#include <boost/filesystem.hpp>
#include <boost/thread.hpp>
#include <wolfssl/options.h>
#include <wolfssl/ssl.h>
#include <hush/tlsmanager.cpp>
using namespace hush;
extern int32_t HUSH_TESTNODE;
// Dump addresses to peers.dat every 5 minutes (300s)
// Satoshi originally used 10 seconds(!), did they know something Peter Wuille didn't?
#define DUMP_ADDRESSES_INTERVAL 300
// This is every 2 blocks, on avg, on HUSH3
#define DUMP_ZINDEX_INTERVAL 150
#define CHECK_PLZ_STOP_INTERVAL 120
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
#ifdef _WIN32
#ifndef PROTECTION_LEVEL_UNRESTRICTED
#define PROTECTION_LEVEL_UNRESTRICTED 10
#endif
#ifndef IPV6_PROTECTION_LEVEL
#define IPV6_PROTECTION_LEVEL 23
#endif
#endif
// We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
#define FEELER_SLEEP_WINDOW 1
#define USE_TLS "encrypted as fuck"
#if defined(USE_TLS) && !defined(TLS1_3_VERSION)
// minimum secure protocol is 1.3
// TLS1_3_VERSION is defined in openssl/tls1.h
#error "ERROR: Your WolfSSL version does not support TLS v1.3!!!"
#endif
using namespace std;
namespace {
int MAX_OUTBOUND_CONNECTIONS = GetArg("-maxoutboundconnections",64);
int MAX_FEELER_CONNECTIONS = GetArg("-maxfeelerconnections",1);
int MAX_INBOUND_FROMIP = GetArg("-maxinboundfromip",3);
struct ListenSocket {
SOCKET socket;
bool allowlisted;
ListenSocket(SOCKET socket, bool allowlisted) : socket(socket), allowlisted(allowlisted) {}
};
}
// Global state variables
extern uint16_t ASSETCHAINS_P2PPORT;
extern char SMART_CHAIN_SYMBOL[65];
bool fDiscover = true;
bool fListen = true;
uint64_t nLocalServices = NODE_NETWORK;
CCriticalSection cs_mapLocalHost;
map<CNetAddr, LocalServiceInfo> mapLocalHost;
static bool vfLimited[NET_MAX] = {};
static CNode* pnodeLocalHost = NULL;
uint64_t nLocalHostNonce = 0;
static std::vector<ListenSocket> vhListenSocket;
CAddrMan addrman;
CZindexStats zstats;
int nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS;
bool fAddressesInitialized = false;
std::string strSubVersion;
TLSManager tlsmanager = TLSManager();
std::atomic<bool> fNetworkActive = { true };
bool setBannedIsDirty = false;
bool GetNetworkActive() { return fNetworkActive; };
extern void StartShutdown();
/**
* I2P SAM session.
* Used to accept incoming and make outgoing I2P connections.
*/
std::unique_ptr<i2p::sam::Session> m_i2p_sam_session;
vector<CNode*> vNodes;
CCriticalSection cs_vNodes;
map<CInv, CDataStream> mapRelay;
deque<pair<int64_t, CInv> > vRelayExpiration;
CCriticalSection cs_mapRelay;
limitedmap<CInv, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);
static deque<string> vOneShots;
static CCriticalSection cs_vOneShots;
static set<CNetAddr> setservAddNodeAddresses;
static CCriticalSection cs_setservAddNodeAddresses;
vector<std::string> vAddedNodes;
CCriticalSection cs_vAddedNodes;
NodeId nLastNodeId = 0;
CCriticalSection cs_nLastNodeId;
static CSemaphore *semOutbound = NULL;
static boost::condition_variable messageHandlerCondition;
// Denial-of-service detection/prevention
// Key is IP address, value is banned-until-time
banmap_t setBanned;
CCriticalSection cs_setBanned;
// Signals for message handling
static CNodeSignals g_signals;
CNodeSignals& GetNodeSignals() { return g_signals; }
// WolfSSL server and client contexts
WOLFSSL_CTX *tls_ctx_server, *tls_ctx_client;
static bool operator==(_NODE_ADDR a, _NODE_ADDR b)
{
return (a.ipAddr == b.ipAddr);
}
void AddOneShot(const std::string& strDest)
{
LOCK(cs_vOneShots);
vOneShots.push_back(strDest);
}
unsigned short GetListenPort()
{
//printf("Listenport.%u\n",Params().GetDefaultPort());
return (unsigned short)(GetArg("-port", Params().GetDefaultPort()));
}
// find 'best' local address for a particular peer
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
{
if (!fListen)
return false;
int nBestScore = -1;
int nBestReachability = -1;
{
LOCK(cs_mapLocalHost);
for (map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++)
{
int nScore = (*it).second.nScore;
int nReachability = (*it).first.GetReachabilityFrom(paddrPeer);
if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
{
addr = CService((*it).first, (*it).second.nPort);
nBestReachability = nReachability;
nBestScore = nScore;
}
}
}
return nBestScore >= 0;
}
//! Convert the serialized seeds into usable address objects.
static std::vector<CAddress> ConvertSeeds(const std::vector<uint8_t> &vSeedsIn)
{
// It'll only connect to one or two seed nodes because once it connects,
// it'll get a pile of addresses with newer timestamps.
// Seed nodes are given a random 'last seen time' of between one and two
// weeks ago.
const int64_t nOneWeek = 7*24*60*60;
std::vector<CAddress> vSeedsOut;
CDataStream s(vSeedsIn, SER_NETWORK, PROTOCOL_VERSION | ADDRV2_FORMAT);
while (!s.eof()) {
CService endpoint;
s >> endpoint;
CAddress addr{endpoint, NODE_NETWORK};
addr.nTime = GetTime() - nOneWeek;
LogPrint("net", "Added hardcoded seed: %s\n", addr.ToString());
vSeedsOut.push_back(addr);
}
return vSeedsOut;
}
// get best local address for a particular peer as a CAddress
// Otherwise, return the unroutable 0.0.0.0 but filled in with
// the normal parameters, since the IP may be changed to a useful
// one by discovery.
CAddress GetLocalAddress(const CNetAddr *paddrPeer)
{
CAddress ret(CService(CNetAddr(),GetListenPort()),0);
CService addr;
if (GetLocal(addr, paddrPeer))
{
ret = CAddress(addr);
}
ret.nServices = nLocalServices;
ret.nTime = GetTime();
return ret;
}
int GetnScore(const CService& addr)
{
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == LOCAL_NONE)
return 0;
return mapLocalHost[addr].nScore;
}
// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood(CNode *pnode)
{
return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() &&
IsReachable(pnode->addrLocal.GetNetwork());
}
// pushes our own address to a peer
void AdvertizeLocal(CNode *pnode)
{
if (fListen && pnode->fSuccessfullyConnected)
{
CAddress addrLocal = GetLocalAddress(&pnode->addr);
// If discovery is enabled, sometimes give our peer the address it
// tells us that it sees us as in case it has a better idea of our
// address than we do.
if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0))
{
addrLocal.SetIP(pnode->addrLocal);
}
if (addrLocal.IsRoutable())
{
LogPrintf("AdvertizeLocal: advertizing address %s\n", addrLocal.ToString());
pnode->PushAddress(addrLocal);
}
}
}
// learn a new local address
bool AddLocal(const CService& addr, int nScore)
{
if (!addr.IsRoutable())
return false;
if (!fDiscover && nScore < LOCAL_MANUAL)
return false;
if (!IsReachable(addr))
return false;
//Add our local addresses to addrman to distribute to other nodes
addrman.Add(CAddress(addr), addr);
addrman.Connected(addr);
addrman.SetLocal(addr);
LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
{
LOCK(cs_mapLocalHost);
bool fAlready = mapLocalHost.count(addr) > 0;
LocalServiceInfo &info = mapLocalHost[addr];
if (!fAlready || nScore >= info.nScore) {
info.nScore = nScore + (fAlready ? 1 : 0);
info.nPort = addr.GetPort();
}
}
return true;
}
bool AddLocal(const CNetAddr &addr, int nScore)
{
return AddLocal(CService(addr, GetListenPort()), nScore);
}
bool RemoveLocal(const CService& addr)
{
LOCK(cs_mapLocalHost);
LogPrintf("RemoveLocal(%s)\n", addr.ToString());
mapLocalHost.erase(addr);
return true;
}
/** vote for a local address */
bool SeenLocal(const CService& addr)
{
{
LOCK(cs_mapLocalHost);
if (mapLocalHost.count(addr) == 0)
return false;
mapLocalHost[addr].nScore++;
}
return true;
}
/** check whether a given address is potentially local */
bool IsLocal(const CService& addr)
{
LOCK(cs_mapLocalHost);
return mapLocalHost.count(addr) > 0;
}
void SetReachable(enum Network net, bool reachable)
{
if (net == NET_UNROUTABLE || net == NET_INTERNAL)
return;
LOCK(cs_mapLocalHost);
vfLimited[net] = !reachable;
}
/** check whether a given network is one we can probably connect to */
bool IsReachable(enum Network net)
{
LOCK(cs_mapLocalHost);
return !vfLimited[net];
}
/** check whether a given address is in a network we can probably connect to */
bool IsReachable(const CNetAddr& addr)
{
enum Network net = addr.GetNetwork();
return IsReachable(net);
}
void AddressCurrentlyConnected(const CService& addr)
{
addrman.Add(CAddress(addr),addr); //Add address if not alread in addrman (picks up addnodes)
addrman.Connected(addr);
}
CNode::eTlsOption CNode::tlsFallbackNonTls = CNode::eTlsOption::FALLBACK_FALSE;
CNode::eTlsOption CNode::tlsValidate = CNode::eTlsOption::FALLBACK_UNSET;
uint64_t CNode::nTotalBytesRecv = 0;
uint64_t CNode::nTotalBytesSent = 0;
CCriticalSection CNode::cs_totalBytesRecv;
CCriticalSection CNode::cs_totalBytesSent;
CNode* FindNode(const CNetAddr& ip)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (static_cast<CNetAddr>(pnode->addr) == ip) {
return pnode;
}
}
return nullptr;
}
CNode* FindNode(const CSubNet& subNet)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
return pnode;
}
}
return nullptr;
}
CNode* FindNode(const std::string& addrName)
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (pnode->addrName == addrName) {
return pnode;
}
}
return nullptr;
}
CNode* FindNode(const CService& addr)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if ((CService)pnode->addr == addr)
return (pnode);
return NULL;
}
static CAddress GetBindAddress(SOCKET sock)
{
CAddress addr_bind;
struct sockaddr_storage sockaddr_bind;
socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
if (sock != INVALID_SOCKET) {
if (!getsockname(sock, (struct sockaddr*)&sockaddr_bind, &sockaddr_bind_len)) {
addr_bind.SetSockAddr((const struct sockaddr*)&sockaddr_bind);
} else {
LogPrintf("Warning: getsockname failed\n");
}
}
return addr_bind;
}
CNode* ConnectNode(CAddress addrConnect, const char *pszDest) {
if (pszDest == NULL) {
if (IsLocal(addrConnect))
return NULL;
// Look for an existing connection
CNode* pnode = FindNode(static_cast<CService>(addrConnect));
if (pnode)
{
pnode->AddRef();
return pnode;
}
}
LogPrint("net", "trying connection %s lastseen=%.1fhrs\n",
pszDest ? pszDest : addrConnect.ToString(),
pszDest ? 0.0 : (double)(GetTime() - addrConnect.nTime)/3600.0);
// Connect
SOCKET hSocket;
bool proxyConnectionFailed = false;
bool connected = false;
std::unique_ptr<Sock> sock;
if (!addrConnect.IsValid()) {
return NULL;
}
if (!IsReachable(addrConnect)) {
return NULL;
}
if (addrConnect.GetNetwork() == NET_I2P && m_i2p_sam_session.get() != nullptr) {
i2p::Connection conn;
if (m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed)) {
connected = true;
sock = std::move(conn.sock);
hSocket = sock->Release();
// addr_bind = CAddress{conn.me, NODE_NONE};
}
} else if (pszDest) {
connected = ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed);
} else {
connected = ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed);
}
if (connected)
{
if (!IsSelectableSocket(hSocket)) {
LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
CloseSocket(hSocket);
return NULL;
}
addrman.Attempt(addrConnect);
WOLFSSL *ssl = NULL;
/* TCP connection is ready. Do client side SSL. */
unsigned long err_code = 0;
ssl = tlsmanager.connect(hSocket, addrConnect, err_code);
if(!ssl) {
LogPrint("tls", "%s():%d - err_code %x, connection to %s failed)\n", __func__, __LINE__, err_code, addrConnect.ToStringIP());
CloseSocket(hSocket);
return NULL;
}
// Add node
CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false, ssl);
pnode->tls_cipher = wolfSSL_get_cipher_name(ssl);
pnode->AddRef();
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
pnode->nTimeConnected = GetTime();
return pnode;
} else if (!proxyConnectionFailed) {
// If connecting to the node failed, and failure is not caused by a problem connecting to
// the proxy, mark this as an attempt.
addrman.Attempt(addrConnect);
}
return NULL;
}
void CNode::CloseSocketDisconnect()
{
fDisconnect = true;
{
LOCK(cs_hSocket);
if (hSocket != INVALID_SOCKET)
{
try
{
LogPrint("net", "disconnecting peer=%d\n", id);
}
catch(std::bad_alloc&)
{
// when the node is shutting down, the call above might use invalid memory resulting in a
// std::bad_alloc exception when instantiating internal objs for handling log category
LogPrintf("(node is probably shutting down) disconnecting peer=%d\n", id);
}
if (ssl) {
unsigned long err_code = 0;
tlsmanager.waitFor(SSL_SHUTDOWN, hSocket, ssl, (DEFAULT_CONNECT_TIMEOUT / 1000), err_code);
wolfSSL_free(ssl);
ssl = NULL;
}
CloseSocket(hSocket);
}
}
{
LOCK(cs_addrKnown);
addrKnown.reset();
}
// in case this fails, we'll empty the recv buffer when the CNode is deleted
TRY_LOCK(cs_vRecvMsg, lockRecv);
if (lockRecv)
vRecvMsg.clear();
}
extern int32_t HUSH_NSPV;
#ifndef HUSH_NSPV_FULLNODE
#define HUSH_NSPV_FULLNODE (HUSH_NSPV <= 0)
#endif // !HUSH_NSPV_FULLNODE
#ifndef HUSH_NSPV_SUPERLITE
#define HUSH_NSPV_SUPERLITE (HUSH_NSPV > 0)
#endif // !HUSH_NSPV_SUPERLITE
void CNode::PushVersion()
{
int nBestHeight = g_signals.GetHeight().get_value_or(0);
int64_t nTime = (fInbound ? GetTime() : GetTime());
CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices));
CAddress addrMe = GetLocalAddress(&addr);
GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce));
if (fLogIPs)
LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id);
else
LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id);
PushMessage(NetMsgType::VERSION, PROTOCOL_VERSION, nLocalServices, nTime, addrYou, addrMe,
nLocalHostNonce, strSubVersion, nBestHeight, true);
}
void DumpBanlist()
{
SweepBanned(); // clean unused entries (if bantime has expired)
if (!BannedSetIsDirty())
return;
int64_t nStart = GetTimeMillis();
CBanDB bandb;
banmap_t banmap;
GetBanned(banmap);
if (bandb.Write(banmap)) {
SetBannedSetDirty(false);
}
fprintf(stderr,"%s: Dumping banlist with %lu items\n", __func__, banmap.size());
LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat %dms\n",
banmap.size(), GetTimeMillis() - nStart);
}
void CNode::ClearBanned()
{
{
LOCK(cs_setBanned);
setBanned.clear();
setBannedIsDirty = true;
}
DumpBanlist(); //store banlist to disk
}
bool CNode::IsBanned(CNetAddr ip)
{
bool fResult = false;
{
LOCK(cs_setBanned);
for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++)
{
CSubNet subNet = (*it).first;
CBanEntry banEntry = (*it).second;
if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil) {
fprintf(stderr,"%s: found banned subnet %s\n", __func__, subNet.ToString().c_str());
fResult = true;
}
}
}
return fResult;
}
bool CNode::IsBanned(CSubNet subnet)
{
bool fResult = false;
{
LOCK(cs_setBanned);
banmap_t::iterator i = setBanned.find(subnet);
if (i != setBanned.end())
{
CBanEntry banEntry = (*i).second;
if (GetTime() < banEntry.nBanUntil)
fResult = true;
}
}
return fResult;
}
void CNode::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
CSubNet subNet(addr);
Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
}
void CNode::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
CBanEntry banEntry(GetTime()+GetArg("-bantime", 60*60*24)); // Default 24-hour ban
if (bantimeoffset > 0)
banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset;
fprintf(stderr, "%s: banning %s until %ld with bantimeoffset=%ld sinceUnixEpoch=%d\n", __func__, subNet.ToString().c_str(), banEntry.nBanUntil, bantimeoffset, sinceUnixEpoch);
{
LOCK(cs_setBanned);
if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
setBanned[subNet] = banEntry;
setBannedIsDirty = true;
} else {
return;
}
}
{
LOCK(cs_vNodes);
for (CNode* pnode : vNodes) {
if (subNet.Match(static_cast<CNetAddr>(pnode->addr)))
fprintf(stderr, "%s: disconnecting from banned node %s\n", __func__, pnode->addr.ToString().c_str() );
pnode->fDisconnect = true;
}
}
if(banReason == BanReasonManuallyAdded) {
fprintf(stderr,"%s: dumping banlist after manual ban\n", __func__);
DumpBanlist(); //store banlist to disk immediately if user requested ban
}
}
bool CNode::Unban(const CNetAddr &addr) {
CSubNet subNet(addr);
return Unban(subNet);
}
bool CNode::Unban(const CSubNet &subNet) {
{
LOCK(cs_setBanned);
if (!setBanned.erase(subNet))
return false;
setBannedIsDirty = true;
}
DumpBanlist(); //store banlist to disk immediately
return true;
}
void GetBanned(banmap_t &banMap)
{
LOCK(cs_setBanned);
// Sweep the banlist so expired bans are not returned
SweepBanned();
banMap = setBanned; //create a thread safe copy
}
void SetBanned(const banmap_t &banMap)
{
LOCK(cs_setBanned);
setBanned = banMap;
setBannedIsDirty = true;
}
void SweepBanned()
{
int64_t now = GetTime();
//fprintf(stderr,"%s: Sweeping banlist\n", __func__);
LOCK(cs_setBanned);
banmap_t::iterator it = setBanned.begin();
while(it != setBanned.end())
{
CSubNet subNet = (*it).first;
CBanEntry banEntry = (*it).second;
if(now > banEntry.nBanUntil)
{
setBanned.erase(it++);
setBannedIsDirty = true;
LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString());
} else {
++it;
}
}
}
bool BannedSetIsDirty()
{
LOCK(cs_setBanned);
return setBannedIsDirty;
}
void SetBannedSetDirty(bool dirty)
{
LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag
setBannedIsDirty = dirty;
}
std::vector<CSubNet> CNode::vAllowlistedRange;
CCriticalSection CNode::cs_vAllowlistedRange;
bool CNode::IsAllowlistedRange(const CNetAddr &addr) {
LOCK(cs_vAllowlistedRange);
BOOST_FOREACH(const CSubNet& subnet, vAllowlistedRange) {
if (subnet.Match(addr))
return true;
}
return false;
}
void CNode::AddAllowlistedRange(const CSubNet &subnet) {
LOCK(cs_vAllowlistedRange);
vAllowlistedRange.push_back(subnet);
}
void CNode::copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap)
{
stats.nodeid = this->GetId();
stats.nServices = nServices;
stats.addr = addr;
// stats.addrBind = addrBind;
stats.m_mapped_as = addr.GetMappedAS(m_asmap);
stats.nLastSend = nLastSend;
stats.nLastRecv = nLastRecv;
stats.nTimeConnected = nTimeConnected;
stats.nTimeOffset = nTimeOffset;
stats.addrName = addrName;
stats.nVersion = nVersion;
stats.cleanSubVer = cleanSubVer;
stats.fInbound = fInbound;
stats.nStartingHeight = nStartingHeight;
stats.nSendBytes = nSendBytes;
stats.nRecvBytes = nRecvBytes;
stats.fAllowlisted = fAllowlisted;
stats.tls_cipher = tls_cipher;
// It is common for nodes with good ping times to suddenly become lagged,
// due to a new block arriving or other large transfer.
// Merely reporting pingtime might fool the caller into thinking the node was still responsive,
// since pingtime does not update until the ping is complete, which might take a while.
// So, if a ping is taking an unusually long time in flight,
// the caller can immediately detect that this is happening.
int64_t nPingUsecWait = 0;
if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
nPingUsecWait = GetTimeMicros() - nPingUsecStart;
}
// Raw ping time is in microseconds, but show it to user as whole seconds (Hush users should be well used to small numbers with many decimal places by now :)
stats.dPingTime = (((double)nPingUsecTime) / 1e6);
stats.dMinPing = (((double)nMinPingUsecTime) / 1e6);
stats.dPingWait = (((double)nPingUsecWait) / 1e6);
stats.m_addr_processed = m_addr_processed.load();
stats.m_addr_rate_limited = m_addr_rate_limited.load();
// Leave string empty if addrLocal invalid (not filled in yet)
stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : "";
// If ssl != NULL it means TLS connection was established successfully
{
LOCK(cs_hSocket);
stats.fTLSEstablished = (ssl != NULL) && (wolfSSL_is_init_finished(ssl) == 1);
}
stats.m_wants_addrv2 = m_wants_addrv2;
}
// requires LOCK(cs_vRecvMsg)
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes)
{
while (nBytes > 0) {
// get current incomplete message, or create a new one
if (vRecvMsg.empty() ||
vRecvMsg.back().complete())
vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion));
CNetMessage& msg = vRecvMsg.back();
// absorb network data
int handled;
if (!msg.in_data)
handled = msg.readHeader(pch, nBytes);
else
handled = msg.readData(pch, nBytes);
if (handled < 0)
return false;
if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId());
return false;
}
pch += handled;
nBytes -= handled;
if (msg.complete()) {
msg.nTime = GetTimeMicros();
messageHandlerCondition.notify_one();
}
}
return true;
}
void V1TransportSerializer::prepareForTransport(CSerializedNetMsg& msg, std::vector<unsigned char>& header) {
// create dbl-sha256 checksum
uint256 hash = Hash(msg.data.begin(), msg.data.end());
// create header
CMessageHeader hdr(Params().MessageStart(), msg.m_type.c_str(), msg.data.size());
// memcpy(hdr.nChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
memcpy(&hdr.nChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
// serialize header
header.reserve(CMessageHeader::HEADER_SIZE);
CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
}
int CNetMessage::readHeader(const char *pch, unsigned int nBytes)
{
// copy data to temporary parsing buffer
unsigned int nRemaining = 24 - nHdrPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
memcpy(&hdrbuf[nHdrPos], pch, nCopy);
nHdrPos += nCopy;
// if header incomplete, exit
if (nHdrPos < 24)
return nCopy;
// deserialize to CMessageHeader
try {
hdrbuf >> hdr;
}
catch (const std::exception&) {
return -1;
}
// reject messages larger than MAX_SIZE
if (hdr.nMessageSize > MAX_SIZE)
return -1;
// switch state to reading message data
in_data = true;
return nCopy;
}
int CNetMessage::readData(const char *pch, unsigned int nBytes)
{
unsigned int nRemaining = hdr.nMessageSize - nDataPos;
unsigned int nCopy = std::min(nRemaining, nBytes);
if (vRecv.size() < nDataPos + nCopy) {
// Allocate up to 256 KiB ahead, but never more than the total message size.
vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
}
memcpy(&vRecv[nDataPos], pch, nCopy);
nDataPos += nCopy;
return nCopy;
}
// requires LOCK(cs_vSend)
void SocketSendData(CNode *pnode)
{
std::deque<CSerializeData>::iterator it = pnode->vSendMsg.begin();
while (it != pnode->vSendMsg.end()) {
const CSerializeData &data = *it;
assert(data.size() > pnode->nSendOffset);
bool bIsSSL = false;
int nBytes = 0, nRet = 0;
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
{
LogPrint("net", "Send: connection with %s is already closed\n", pnode->addr.ToString());
break;
}
bIsSSL = (pnode->ssl != NULL);
if (bIsSSL)
{
wolfSSL_ERR_clear_error(); // clear the error queue, otherwise we may be reading an old error that occurred previously in the current thread
nBytes = wolfSSL_write(pnode->ssl, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset);
nRet = wolfSSL_get_error(pnode->ssl, nBytes);
}
else
{
nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
nRet = WSAGetLastError();
}
}
if (nBytes > 0)
{
pnode->nLastSend = GetTime();
pnode->nSendBytes += nBytes;
pnode->nSendOffset += nBytes;
pnode->RecordBytesSent(nBytes);
if (pnode->nSendOffset == data.size()) {
pnode->nSendOffset = 0;
pnode->nSendSize -= data.size();
it++;
} else {
// could not send full message; stop sending more
break;
}
} else {
if (nBytes <= 0) {
// error
if (bIsSSL)
{
if (nRet != WOLFSSL_ERROR_WANT_READ && nRet != WOLFSSL_ERROR_WANT_WRITE)
{
LogPrintf("ERROR: SSL_write %s; closing connection\n", wolfSSL_ERR_error_string(nRet, NULL));
pnode->CloseSocketDisconnect();
} else {
// preventive measure from exhausting CPU usage
MilliSleep(1); // 1 msec
}
} else {
if (nRet != WSAEWOULDBLOCK && nRet != WSAEMSGSIZE && nRet != WSAEINTR && nRet != WSAEINPROGRESS)
{
LogPrintf("ERROR: send %s; closing connection\n", NetworkErrorString(nRet));
pnode->CloseSocketDisconnect();
}
}
}
// couldn't send anything at all
break;
}
}
if (it == pnode->vSendMsg.end()) {
assert(pnode->nSendOffset == 0);
assert(pnode->nSendSize == 0);
}
pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
}
static list<CNode*> vNodesDisconnected;
class CNodeRef {
public:
CNodeRef(CNode *pnode) : _pnode(pnode) {
LOCK(cs_vNodes);
_pnode->AddRef();
}
~CNodeRef() {
LOCK(cs_vNodes);
_pnode->Release();
}
CNode& operator *() const {return *_pnode;};
CNode* operator ->() const {return _pnode;};
CNodeRef& operator =(const CNodeRef& other)
{
if (this != &other) {
LOCK(cs_vNodes);
_pnode->Release();
_pnode = other._pnode;
_pnode->AddRef();
}
return *this;
}
CNodeRef(const CNodeRef& other):
_pnode(other._pnode)
{
LOCK(cs_vNodes);
_pnode->AddRef();
}
private:
CNode *_pnode;
};
static bool ReverseCompareNodeMinPingTime(const CNodeRef &a, const CNodeRef &b)
{
return a->nMinPingUsecTime > b->nMinPingUsecTime;
}
static bool ReverseCompareNodeTimeConnected(const CNodeRef &a, const CNodeRef &b)
{
return a->nTimeConnected > b->nTimeConnected;
}
class CompareNetGroupKeyed
{
std::vector<unsigned char> vchSecretKey;
public:
CompareNetGroupKeyed()
{
vchSecretKey.resize(32, 0);
GetRandBytes(vchSecretKey.data(), vchSecretKey.size());
}
bool operator()(const CNodeRef &a, const CNodeRef &b)
{
std::vector<unsigned char> vchGroupA, vchGroupB;
CSHA256 hashA, hashB;
std::vector<unsigned char> vchA(32), vchB(32);
vchGroupA = a->addr.GetGroup(addrman.m_asmap);
vchGroupB = b->addr.GetGroup(addrman.m_asmap);
hashA.Write(begin_ptr(vchGroupA), vchGroupA.size());
hashB.Write(begin_ptr(vchGroupB), vchGroupB.size());
hashA.Write(begin_ptr(vchSecretKey), vchSecretKey.size());
hashB.Write(begin_ptr(vchSecretKey), vchSecretKey.size());
hashA.Finalize(begin_ptr(vchA));
hashB.Finalize(begin_ptr(vchB));
return vchA < vchB;
}
};
static bool AttemptToEvictConnection(bool fPreferNewConnection) {
std::vector<CNodeRef> vEvictionCandidates;
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode *node, vNodes) {
if (node->fAllowlisted)
continue;
if (!node->fInbound)
continue;
if (node->fDisconnect)
continue;
vEvictionCandidates.push_back(CNodeRef(node));
}
}
if (vEvictionCandidates.empty()) return false;
// Protect connections with certain characteristics
// Check version of eviction candidates and prioritize nodes which do not support network upgrade.
std::vector<CNodeRef> vTmpEvictionCandidates;
int height;
{
LOCK(cs_main);
height = chainActive.Height();
}
const Consensus::Params& params = Params().GetConsensus();
auto nextEpoch = NextEpoch(height, params);
if (nextEpoch) {
auto idx = nextEpoch.get();
int nActivationHeight = params.vUpgrades[idx].nActivationHeight;
if (nActivationHeight > 0 &&
height < nActivationHeight &&
height >= nActivationHeight - NETWORK_UPGRADE_PEER_PREFERENCE_BLOCK_PERIOD)
{
// Find any nodes which don't support the protocol version for the next upgrade
for (const CNodeRef &node : vEvictionCandidates) {
if (node->nVersion < params.vUpgrades[idx].nProtocolVersion) {
vTmpEvictionCandidates.push_back(node);
}
}
// Prioritize these nodes by replacing eviction set with them
if (vTmpEvictionCandidates.size() > 0) {
vEvictionCandidates = vTmpEvictionCandidates;
}
}
}
// Deterministically select 4 peers to protect by netgroup.
// An attacker cannot predict which netgroups will be protected.
static CompareNetGroupKeyed comparerNetGroupKeyed;
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), comparerNetGroupKeyed);
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
if (vEvictionCandidates.empty()) return false;
// Protect the 8 nodes with the best ping times.
// An attacker cannot manipulate this metric without physically moving nodes closer to the target.
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime);
vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
if (vEvictionCandidates.empty()) return false;
// Protect the half of the remaining nodes which have been connected the longest.
// This replicates the existing implicit behavior.
std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected);
vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast<int>(vEvictionCandidates.size() / 2), vEvictionCandidates.end());
if (vEvictionCandidates.empty()) return false;
// Identify the network group with the most connections and youngest member.
// (vEvictionCandidates is already sorted by reverse connect time)
std::vector<unsigned char> naMostConnections;
unsigned int nMostConnections = 0;
int64_t nMostConnectionsTime = 0;
std::map<std::vector<unsigned char>, std::vector<CNodeRef> > mapAddrCounts;
BOOST_FOREACH(const CNodeRef &node, vEvictionCandidates) {
mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)].push_back(node);
int64_t grouptime = mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)][0]->nTimeConnected;
size_t groupsize = mapAddrCounts[node->addr.GetGroup(addrman.m_asmap)].size();
if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) {
nMostConnections = groupsize;
nMostConnectionsTime = grouptime;
naMostConnections = node->addr.GetGroup(addrman.m_asmap);
}
}
// Reduce to the network group with the most connections
vEvictionCandidates = mapAddrCounts[naMostConnections];
// Do not disconnect peers if there is only one unprotected connection from their network group.
if (vEvictionCandidates.size() <= 1)
// unless we prefer the new connection (for allowlisted peers)
if (!fPreferNewConnection)
return false;
// Disconnect from the network group with the most connections
vEvictionCandidates[0]->fDisconnect = true;
return true;
}
static void AcceptConnection(const ListenSocket& hListenSocket) {
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
CAddress addr;
if (hSocket == INVALID_SOCKET) {
const int nErr = WSAGetLastError();
if (nErr != WSAEWOULDBLOCK) {
LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
}
return;
}
if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) {
LogPrintf("Warning: Unknown socket family\n");
}
const CAddress addr_bind = GetBindAddress(hSocket);
bool allowlisted = hListenSocket.allowlisted || CNode::IsAllowlistedRange(addr);
CreateNodeFromAcceptedSocket(hSocket, allowlisted, addr_bind, addr);
}
void CreateNodeFromAcceptedSocket(SOCKET hSocket,
bool allowlisted,
const CAddress& addr_bind,
const CAddress& addr)
{
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
// SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
// CAddress addr;
int nInboundThisIP = 0;
int nInbound = 0;
int nMaxInbound = nMaxConnections - (MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS);
{
LOCK(cs_vNodes);
struct sockaddr_storage tmpsockaddr;
socklen_t tmplen = sizeof(sockaddr);
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->fInbound)
{
nInbound++;
if (pnode->addr.GetSockAddr((struct sockaddr*)&tmpsockaddr, &tmplen) && (tmplen == len) && (memcmp(&sockaddr, &tmpsockaddr, tmplen) == 0))
nInboundThisIP++;
}
}
}
if (!fNetworkActive) {
LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString());
CloseSocket(hSocket);
return;
}
if (!IsSelectableSocket(hSocket))
{
LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
CloseSocket(hSocket);
return;
}
if (CNode::IsBanned(addr) && !allowlisted)
{
LogPrintf("connection from %s dropped (banned)\n", addr.ToString());
CloseSocket(hSocket);
return;
}
if (!IsReachable(addr))
{
CloseSocket(hSocket);
return;
}
if (nInbound >= nMaxInbound)
{
if (!AttemptToEvictConnection(allowlisted)) {
// No connection to evict, disconnect the new connection
LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n");
CloseSocket(hSocket);
return;
}
}
if (nInboundThisIP >= MAX_INBOUND_FROMIP)
{
// No connection to evict, disconnect the new connection
LogPrint("net", "too many connections from %s, connection refused\n", addr.ToString());
CloseSocket(hSocket);
return;
}
// According to the internet TCP_NODELAY is not carried into accepted sockets
// on all platforms. Set it again here just to be sure.
int set = 1;
#ifdef _WIN32
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
#else
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int));
#endif
WOLFSSL *ssl = NULL;
SetSocketNonBlocking(hSocket, true);
/* TCP connection is ready. Do server side TLS */
unsigned long err_code = 0;
ssl = tlsmanager.accept( hSocket, addr, err_code);
if(!ssl)
{
LogPrint("tls", "TLS: %s():%d - err_code %x, failure accepting connection from %s\n", __func__, __LINE__, err_code, addr.ToStringIP());
CloseSocket(hSocket);
return;
}
CNode* pnode = new CNode(hSocket, addr, "", true, ssl);
pnode->AddRef();
pnode->fAllowlisted = allowlisted;
pnode->tls_cipher = wolfSSL_get_cipher_name(ssl);
LogPrint("net", "connection from %s accepted using cipher %s\n", addr.ToString(), pnode->tls_cipher);
{
LOCK(cs_vNodes);
vNodes.push_back(pnode);
}
}
void ThreadSocketHandler()
{
unsigned int nPrevNodeCount = 0;
while (true)
{
// Disconnect nodes
{
LOCK(cs_vNodes);
// Disconnect unused nodes
vector<CNode*> vNodesCopy = vNodes;
BOOST_FOREACH(CNode* pnode, vNodesCopy)
{
if (pnode->fDisconnect ||
(pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty()))
{
// remove from vNodes
vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
// release outbound grant (if any)
pnode->grantOutbound.Release();
// close socket and cleanup
pnode->CloseSocketDisconnect();
// hold in disconnected pool until all refs are released
if (pnode->fNetworkNode || pnode->fInbound)
pnode->Release();
vNodesDisconnected.push_back(pnode);
}
}
}
{
// Delete disconnected nodes
list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy)
{
// wait until threads are done using it
if (pnode->GetRefCount() <= 0)
{
bool fDelete = false;
{
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend)
{
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
if (lockRecv)
{
TRY_LOCK(pnode->cs_inventory, lockInv);
if (lockInv)
fDelete = true;
}
}
}
if (fDelete)
{
vNodesDisconnected.remove(pnode);
delete pnode;
}
}
}
}
if(vNodes.size() != nPrevNodeCount) {
nPrevNodeCount = vNodes.size();
uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount);
}
// Find which sockets have data to receive
struct timeval timeout;
timeout.tv_sec = 0;
timeout.tv_usec = 50000; // frequency to poll pnode->vSend
fd_set fdsetRecv;
fd_set fdsetSend;
fd_set fdsetError;
FD_ZERO(&fdsetRecv);
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
SOCKET hSocketMax = 0;
bool have_fds = false;
BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) {
FD_SET(hListenSocket.socket, &fdsetRecv);
hSocketMax = max(hSocketMax, hListenSocket.socket);
have_fds = true;
}
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
{
LOCK(pnode->cs_hSocket);
if (pnode->hSocket == INVALID_SOCKET)
continue;
FD_SET(pnode->hSocket, &fdsetError);
hSocketMax = max(hSocketMax, pnode->hSocket);
have_fds = true;
// Implement the following logic:
// * If there is data to send, select() for sending data. As this only
// happens when optimistic write failed, we choose to first drain the
// write buffer in this case before receiving more. This avoids
// needlessly queueing received data, if the remote peer is not themselves
// receiving data. This means properly utilizing TCP flow control signaling.
// * Otherwise, if there is no (complete) message in the receive buffer,
// or there is space left in the buffer, select() for receiving data.
// * (if neither of the above applies, there is certainly one message
// in the receiver buffer ready to be processed).
// Together, that means that at least one of the following is always possible,
// so we don't deadlock:
// * We send some data.
// * We wait for data to be received (and disconnect after timeout).
// * We process a message in the buffer (message handler thread).
{
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend && !pnode->vSendMsg.empty()) {
FD_SET(pnode->hSocket, &fdsetSend);
continue;
}
}
{
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
if (lockRecv && (
pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() ||
pnode->GetTotalRecvSize() <= ReceiveFloodSize()))
FD_SET(pnode->hSocket, &fdsetRecv);
}
}
}
int nSelect = select(have_fds ? hSocketMax + 1 : 0,
&fdsetRecv, &fdsetSend, &fdsetError, &timeout);
boost::this_thread::interruption_point();
if (nSelect == SOCKET_ERROR)
{
if (have_fds)
{
int nErr = WSAGetLastError();
LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
for (unsigned int i = 0; i <= hSocketMax; i++)
FD_SET(i, &fdsetRecv);
}
FD_ZERO(&fdsetSend);
FD_ZERO(&fdsetError);
MilliSleep(timeout.tv_usec/1000);
}
// Accept new connections
BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket)
{
if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
{
AcceptConnection(hListenSocket);
}
}
// Service each socket
vector<CNode*> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
BOOST_FOREACH(CNode* pnode, vNodesCopy)
pnode->AddRef();
}
BOOST_FOREACH(CNode* pnode, vNodesCopy)
{
boost::this_thread::interruption_point();
if (tlsmanager.threadSocketHandler(pnode,fdsetRecv,fdsetSend,fdsetError)==-1){
continue;
}
// Inactivity checking
int64_t nTime = GetTime();
if (nTime - pnode->nTimeConnected > 60)
{
if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
{
LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id);
pnode->fDisconnect = true;
}
else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
{
LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
pnode->fDisconnect = true;
}
else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
{
LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
pnode->fDisconnect = true;
}
else if (pnode->nPingRetry > MAX_PING_RETRY)
{
LogPrintf("ping max retry exceeded, disconnecting node %i\n", pnode->id);
pnode->fDisconnect = true;
}
}
}
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodesCopy)
pnode->Release();
}
}
}
void ThreadDNSAddressSeed()
{
// goal: only query DNS seeds if address need is acute
if ((addrman.size() > 0) &&
(!GetBoolArg("-forcednsseed", false))) {
MilliSleep(11 * 1000);
LOCK(cs_vNodes);
if (vNodes.size() >= 2) {
LogPrintf("P2P peers available. Skipped DNS seeding.\n");
return;
}
}
const vector<CDNSSeedData> &vSeeds = Params().DNSSeeds();
int found = 0;
LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) {
if (HaveNameProxy()) {
AddOneShot(seed.host);
} else {
vector<CNetAddr> vIPs;
vector<CAddress> vAdd;
if (LookupHost(seed.host.c_str(), vIPs, 256, true))
{
BOOST_FOREACH(const CNetAddr& ip, vIPs)
{
int nOneDay = 24*3600;
CAddress addr = CAddress(CService(ip, ASSETCHAINS_P2PPORT));
addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old
vAdd.push_back(addr);
}
}
// TODO: The seed name resolve may fail, yielding an IP of [::], which results in
// addrman assigning the same source to results from different seeds.
// This should switch to a hard-coded stable dummy IP for each seed name, so that the
// resolve is not required at all.
if (!vIPs.empty()) {
CService seedSource;
Lookup(seed.name.c_str(), seedSource, 0, true);
addrman.Add(vAdd, seedSource);
}
}
}
LogPrintf("%d addresses found from DNS seeds\n", found);
}
void DumpAddresses()
{
int64_t nStart = GetTimeMillis();
CAddrDB adb;
adb.Write(addrman);
LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
}
void DumpZindexStats()
{
int64_t nStart = GetTimeMillis();
CZindexDB zdb;
zdb.Write(zstats);
LogPrintf("Flushed stats at height %li to zindex.dat %dms\n", zstats.Height(), GetTimeMillis() - nStart);
}
void CheckIfWeShouldStop()
{
// If the RPC interface is "stuck", such as filling up with deadlocks
// and cannot process any more requests, the only option was to kill the full node.
// This is a disk-based method where a node can realize it should stop, and which
// can help avoid extremely long rescans
if(boost::filesystem::exists(GetDataDir() / "plz_stop")) {
LogPrintf("%s: Found plz_stop file, shutting down...\n", __func__);
StartShutdown();
}
}
void static ProcessOneShot()
{
string strDest;
{
LOCK(cs_vOneShots);
if (vOneShots.empty())
return;
strDest = vOneShots.front();
vOneShots.pop_front();
}
CAddress addr;
CSemaphoreGrant grant(*semOutbound, true);
if (grant) {
if (!OpenNetworkConnection(addr, &grant, strDest.c_str(), true))
AddOneShot(strDest);
}
}
int64_t PoissonNextSend(int64_t now, int average_interval_seconds)
{
return now + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
}
void ThreadOpenConnections()
{
// Connect to specific addresses
if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0)
{
for (int64_t nLoop = 0;; nLoop++)
{
ProcessOneShot();
BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"])
{
CAddress addr;
OpenNetworkConnection(addr, NULL, strAddr.c_str());
for (int i = 0; i < 10 && i < nLoop; i++)
{
MilliSleep(500);
}
}
MilliSleep(500);
}
}
// Initiate network connections
int64_t nStart = GetTime();
// Minimum time before next feeler connection (in microseconds).
int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
while (true) {
ProcessOneShot();
MilliSleep(500);
CSemaphoreGrant grant(*semOutbound);
boost::this_thread::interruption_point();
// Add seed nodes if DNS seeds are all down (an infrastructure attack?).
// if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
if (GetTime() - nStart > 60) {
static bool done = false;
if (!done) {
std::vector<CAddress> vFixedSeeds = ConvertSeeds(Params().FixedSeeds());
LogPrintf("Adding %d fixed seed nodes.\n", vFixedSeeds.size());
BOOST_FOREACH(CAddress fixedSeed, vFixedSeeds) {
std::vector<CAddress> vFixedSeed;
vFixedSeed.push_back(fixedSeed);
CService seedSource;
Lookup(fixedSeed.ToString().c_str(), seedSource, Params().GetDefaultPort(), false);
addrman.Add(vFixedSeed, seedSource);
}
done = true;
LogPrintf("Done adding fixed seed nodes.\n");
}
}
// Choose an address to connect to based on most recently seen
CAddress addrConnect;
// Only connect out to one peer per network group. Originally /16 for IPv4, now ASNs via
// -asmap for ASN bucketing, which is enabled by default
// Do this here so we don't have to critsect vNodes inside mapAddresses critsect.
int nOutbound = 0;
set<vector<unsigned char> > setConnected;
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes) {
if (!pnode->fInbound) {
setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap));
nOutbound++;
}
}
}
LogPrint("net", "Creating %d outbound connections\n", nOutbound);
assert(nOutbound <= (MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS));
// "Feeler Connections" as per https://eprint.iacr.org/2015/263.pdf
// "Eclipse Attacks on Bitcoin’s Peer-to-Peer Network" by
// Ethan Heilman, Alison Kendler, Aviv Zohar, Sharon Goldberg.
//
// Design goals:
// * Increase the number of connectable addresses in the tried table.
//
// Method:
// * Choose a random address from new and attempt to connect to it if we can connect
// successfully it is added to tried.
// * Start attempting feeler connections only after node finishes making outbound
// connections.
// * Make feeler connections randomly with 120s average interval via PoissonNextSend.
// Originally from https://github.com/bitcoin/bitcoin/pull/8282
// Modified for API changes by Duke Leto
bool fFeeler = false;
if (nOutbound >= MAX_OUTBOUND_CONNECTIONS) {
int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
if (nTime > nNextFeeler) {
nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
fFeeler = true;
} else {
continue;
}
}
int64_t nNow = GetTime();
int nTries = 0;
LogPrint("net", "Resolving addrman collisions\n");
addrman.ResolveCollisions();
while (true) {
if (ShutdownRequested())
break;
LogPrint("net", "%s: addrman loop nTries=%d\n", __func__, nTries);
CAddrInfo addr = addrman.SelectTriedCollision();
// SelectTriedCollision returns an invalid address if it is empty.
if (!fFeeler || !addr.IsValid()) {
addr = addrman.Select(fFeeler);
}
// if we selected an invalid address, restart
if (!addr.IsValid() || setConnected.count(addr.GetGroup(addrman.m_asmap)) || IsLocal(addr)) {
LogPrint("net", "%s: addrman loop address is not valid, or ASN exists or is local, nTries=%d\n", __func__, nTries);
break;
}
// If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
// stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
// already-connected network ranges, ...) before trying new addrman addresses.
nTries++;
if (nTries > 100) {
LogPrint("net", "%s: addrman loop too many tries, nTries=%d\n", __func__, nTries);
break;
}
if (!IsReachable(addr)) {
LogPrint("net", "%s: addrman loop not reachable, nTries=%d\n", __func__, nTries);
continue;
}
// only consider very recently tried nodes after 30 failed attempts
if (nNow - addr.nLastTry < 600 && nTries < 30)
continue;
/* TODO: port this code
// only consider nodes missing relevant services after 40 failed attempts
if ((addr.nServices & nRelevantServices) != nRelevantServices && nTries < 40)
continue;
*/
//TODO: why is this a good thing?
// do not allow non-default ports, unless after 50 invalid addresses selected already
if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) {
LogPrint("net", "%s: addrman loop not default port, nTries=%d\n", __func__, nTries);
continue;
}
addrConnect = addr;
break;
}
if (addrConnect.IsValid()) {
if (fFeeler) {
// Add small amount of random noise before connection to avoid synchronization
int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
MilliSleep(randsleep);
LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString().c_str());
printf("%s: Making feeler connection to %s\n", __func__, addrConnect.ToString().c_str());
}
//int failures = setConnected.size() >= std::min(nMaxConnections - 1, 2);
OpenNetworkConnection(addrConnect,/*failures,*/ &grant, NULL, false, fFeeler);
}
}
}
void ThreadOpenAddedConnections()
{
{
LOCK(cs_vAddedNodes);
vAddedNodes = mapMultiArgs["-addnode"];
}
if (HaveNameProxy()) {
while(true) {
list<string> lAddresses(0);
{
LOCK(cs_vAddedNodes);
BOOST_FOREACH(const std::string& strAddNode, vAddedNodes)
lAddresses.push_back(strAddNode);
}
BOOST_FOREACH(const std::string& strAddNode, lAddresses) {
CAddress addr;
CSemaphoreGrant grant(*semOutbound);
OpenNetworkConnection(addr, &grant, strAddNode.c_str());
MilliSleep(500);
}
MilliSleep(120000); // Retry every 2 minutes
}
}
for (unsigned int i = 0; true; i++)
{
list<string> lAddresses(0);
{
LOCK(cs_vAddedNodes);
BOOST_FOREACH(const std::string& strAddNode, vAddedNodes)
lAddresses.push_back(strAddNode);
}
list<vector<CService> > lservAddressesToAdd(0);
BOOST_FOREACH(const std::string& strAddNode, lAddresses) {
vector<CService> vservNode(0);
if(Lookup(strAddNode.c_str(), vservNode, Params().GetDefaultPort(), fNameLookup, 0))
{
lservAddressesToAdd.push_back(vservNode);
{
LOCK(cs_setservAddNodeAddresses);
BOOST_FOREACH(const CService& serv, vservNode)
setservAddNodeAddresses.insert(serv);
}
}
}
// Attempt to connect to each IP for each addnode entry until at least one is successful per addnode entry
// (keeping in mind that addnode entries can have many IPs if fNameLookup)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
for (list<vector<CService> >::iterator it = lservAddressesToAdd.begin(); it != lservAddressesToAdd.end(); it++)
{
BOOST_FOREACH(const CService& addrNode, *(it))
if (pnode->addr == addrNode)
{
it = lservAddressesToAdd.erase(it);
if ( it != lservAddressesToAdd.begin() )
it--;
break;
}
if (it == lservAddressesToAdd.end())
break;
}
}
BOOST_FOREACH(vector<CService>& vserv, lservAddressesToAdd)
{
CSemaphoreGrant grant(*semOutbound);
OpenNetworkConnection(CAddress(vserv[i % vserv.size()]), &grant);
MilliSleep(500);
}
MilliSleep(120000);
}
}
// if successful, this moves the passed grant to the constructed node
bool OpenNetworkConnection(const CAddress& addrConnect, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler)
{
LogPrint("net", "%s: %s feeler=%d oneshot=%d\n", __func__, addrConnect.ToString(), fFeeler, fOneShot);
// Initiate outbound network connection
boost::this_thread::interruption_point();
if (!fNetworkActive) {
return false;
}
if (!IsReachable(addrConnect)) {
return false;
}
if (!pszDest) {
if (IsLocal(addrConnect) ||
FindNode(static_cast<CNetAddr>(addrConnect)) || CNode::IsBanned(addrConnect) ||
FindNode(addrConnect.ToStringIPPort()))
return false;
} else if (FindNode(std::string(pszDest)))
return false;
LogPrint("net", "%s: ConnectNode(%s)\n", __func__, addrConnect.ToString());
CNode* pnode = ConnectNode(addrConnect, pszDest);
boost::this_thread::interruption_point();
if (!pnode) {
LogPrint("net", "%s: ConnectNode(%s) FAILED\n", __func__, addrConnect.ToString());
return false;
}
if (grantOutbound)
grantOutbound->MoveTo(pnode->grantOutbound);
pnode->fNetworkNode = true;
if (fOneShot)
pnode->fOneShot = true;
if (fFeeler)
pnode->fFeeler = true;
return true;
}
void ThreadMessageHandler()
{
boost::mutex condition_mutex;
boost::unique_lock<boost::mutex> lock(condition_mutex);
SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL);
while (true)
{
vector<CNode*> vNodesCopy;
{
LOCK(cs_vNodes);
vNodesCopy = vNodes;
BOOST_FOREACH(CNode* pnode, vNodesCopy) {
pnode->AddRef();
}
}
// Poll the connected nodes for messages
CNode* pnodeTrickle = NULL;
if (!vNodesCopy.empty())
pnodeTrickle = vNodesCopy[GetRand(vNodesCopy.size())];
bool fSleep = true;
// Randomize the order in which we process messages from/to our peers.
// This prevents attacks in which an attacker exploits having multiple
// consecutive connections in the vNodes list.
random_shuffle(vNodesCopy.begin(), vNodesCopy.end(), GetRandInt);
BOOST_FOREACH(CNode* pnode, vNodesCopy)
{
if (pnode->fDisconnect)
continue;
// Receive messages
{
TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
if (lockRecv)
{
if (!g_signals.ProcessMessages(pnode))
pnode->CloseSocketDisconnect();
if (pnode->nSendSize < SendBufferSize())
{
if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete()))
{
fSleep = false;
}
}
}
}
boost::this_thread::interruption_point();
// Send messages
{
TRY_LOCK(pnode->cs_vSend, lockSend);
if (lockSend)
g_signals.SendMessages(pnode, pnode == pnodeTrickle || pnode->fAllowlisted);
}
boost::this_thread::interruption_point();
}
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodesCopy)
pnode->Release();
}
if (fSleep)
messageHandlerCondition.timed_wait(lock, boost::posix_time::microsec_clock::universal_time() + boost::posix_time::milliseconds(100));
}
}
void ThreadI2PCheck()
{
const int64_t wait_time = 5000;
const int64_t err_wait_cap = wait_time * 60;
auto err_wait = wait_time;
bool advertising_listen_addr = false;
i2p::Connection conn;
while (true) {
MilliSleep(wait_time);
boost::this_thread::interruption_point();
if (!m_i2p_sam_session->Check()) {
MilliSleep(err_wait);
if (err_wait < err_wait_cap) {
err_wait *= 2;
}
} else {
err_wait = wait_time;
}
}
}
void ThreadI2PAcceptIncoming()
{
const int64_t err_wait_begin = 1000;
const int64_t err_wait_cap = 1000 * 60 * 5;
auto err_wait = err_wait_begin;
bool advertising_listen_addr = false;
i2p::Connection conn;
while (true) {
boost::this_thread::interruption_point();
if (!m_i2p_sam_session->Listen(conn)) {
if (advertising_listen_addr && conn.me.IsValid()) {
RemoveLocal(conn.me);
advertising_listen_addr = false;
}
MilliSleep(err_wait);
if (err_wait < err_wait_cap) {
err_wait *= 2;
}
continue;
}
if (!advertising_listen_addr) {
AddLocal(conn.me, LOCAL_MANUAL);
advertising_listen_addr = true;
}
if (!m_i2p_sam_session->Accept(conn)) {
continue;
}
CreateNodeFromAcceptedSocket(conn.sock->Release(), false,
CAddress{conn.me, NODE_NETWORK}, CAddress{conn.peer, NODE_NETWORK});
}
}
bool BindListenPort(const CService &addrBind, string& strError, bool fAllowlisted)
{
strError = "";
int nOne = 1;
// Create socket for listening for incoming connections
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
{
strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
LogPrintf("%s\n", strError);
return false;
}
SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hListenSocket == INVALID_SOCKET)
{
strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError);
return false;
}
if (!IsSelectableSocket(hListenSocket))
{
strError = "Error: Couldn't create a listenable socket for incoming connections";
LogPrintf("%s\n", strError);
return false;
}
#ifndef _WIN32
#ifdef SO_NOSIGPIPE
// Different way of disabling SIGPIPE on BSD
setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int));
#endif
// Allow binding if the port is still in TIME_WAIT state after
// the program was closed and restarted.
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int));
// Disable Nagle's algorithm
setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int));
#else
setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int));
setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int));
#endif
// Set to non-blocking, incoming connections will also inherit this
//
// WARNING!
// On Linux, the new socket returned by accept() does not inherit file
// status flags such as O_NONBLOCK and O_ASYNC from the listening
// socket. http://man7.org/linux/man-pages/man2/accept.2.html
if (!SetSocketNonBlocking(hListenSocket, true)) {
strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError);
return false;
}
// some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
// and enable it by default or not. Try to enable it, if possible.
if (addrBind.IsIPv6()) {
#ifdef IPV6_V6ONLY
#ifdef _WIN32
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int));
#else
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int));
#endif
#endif
#ifdef _WIN32
int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
#endif
}
if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
if (nErr == WSAEADDRINUSE)
strError = strprintf(_("Unable to bind to %s on this computer. Full node is probably already running."), addrBind.ToString());
else
strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
LogPrintf("%s\n", strError);
CloseSocket(hListenSocket);
return false;
}
LogPrintf("Bound to %s\n", addrBind.ToString());
// Listen for incoming connections
if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
{
strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
LogPrintf("%s\n", strError);
CloseSocket(hListenSocket);
return false;
}
vhListenSocket.push_back(ListenSocket(hListenSocket, fAllowlisted));
if (addrBind.IsRoutable() && fDiscover && !fAllowlisted)
AddLocal(addrBind, LOCAL_BIND);
return true;
}
void static Discover(boost::thread_group& threadGroup)
{
if (!fDiscover)
return;
#ifdef _WIN32
// Get local host IP
char pszHostName[256] = "";
if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
{
vector<CNetAddr> vaddr;
if (LookupHost(pszHostName, vaddr, 0, false))
{
BOOST_FOREACH (const CNetAddr &addr, vaddr)
{
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
}
}
}
#else
// Get local host ip
struct ifaddrs* myaddrs;
if (getifaddrs(&myaddrs) == 0)
{
for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next)
{
if (ifa->ifa_addr == NULL) continue;
if ((ifa->ifa_flags & IFF_UP) == 0) continue;
if (strcmp(ifa->ifa_name, "lo") == 0) continue;
if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
if (ifa->ifa_addr->sa_family == AF_INET)
{
struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
CNetAddr addr(s4->sin_addr);
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
}
else if (ifa->ifa_addr->sa_family == AF_INET6)
{
struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
CNetAddr addr(s6->sin6_addr);
if (AddLocal(addr, LOCAL_IF))
LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
}
}
freeifaddrs(myaddrs);
}
#endif
}
void LoadPeers() {
uiInterface.InitMessage(_("Loading addresses..."));
// Load addresses for peers.dat
int64_t nStart = GetTimeMillis();
{
CAddrDB adb;
if (!adb.Read(addrman)) {
addrman.Clear();
LogPrintf("Invalid or missing peers.dat; recreating\n");
}
}
LogPrintf("Loaded %i addresses from peers.dat %dms\n",
addrman.size(), GetTimeMillis() - nStart);
fAddressesInitialized = true;
}
//extern CWallet pwalletMain;
void StartNode(boost::thread_group& threadGroup, CScheduler& scheduler)
{
CheckIfWeShouldStop();
if (GetBoolArg("-nspv_msg", DEFAULT_NSPV_PROCESSING)) {
nLocalServices |= NODE_NSPV;
LogPrintf("NSPV messages processing enabled\n");
}
proxyType i2p_sam;
if (GetProxy(NET_I2P, i2p_sam)) {
m_i2p_sam_session = std::unique_ptr<i2p::sam::Session>(new i2p::sam::Session(GetDataDir() / "i2p_private_key",
i2p_sam.proxy));
}
if (fZindex) {
uiInterface.InitMessage(_("Loading zindex stats..."));
int64_t nStart = GetTimeMillis();
{
CZindexDB zdb;
if (!zdb.Read(zstats)) {
// The first time nodes use zindex.dat code, no file will be found
// TODO: rescan if invalid only
LogPrintf("Invalid or missing zindex.dat! Generating new...\n");
//bool update = true;
//pwalletMain->ScanForWalletTransactions(chainActive.Genesis(),update);
// We assume this is the first startup with zindex.dat code, and serialize current data to disk.
DumpZindexStats();
// Now read-in the stats we just wrote to disk to memory
if(!zdb.Read(zstats)) {
LogPrintf("Invalid or missing zindex.dat! Stats may be corrupt\n");
} else {
LogPrintf("Loaded stats at height %li from zindex.dat %dms\n", zstats.Height(), GetTimeMillis() - nStart);
}
} else {
LogPrintf("Loaded stats at height %li from zindex.dat %dms\n", zstats.Height(), GetTimeMillis() - nStart);
}
}
}
uiInterface.InitMessage(_("Loading addresses..."));
int64_t nStart = GetTimeMillis();
fprintf(stderr, "%s: Loading addresses for peers.dat at %ld\n", __func__, nStart);
{
CAddrDB adb;
if (!adb.Read(addrman))
LogPrintf("Invalid or missing peers.dat! This can happen when upgrading. Whatevz, recreating\n");
}
LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart);
fAddressesInitialized = true;
if (semOutbound == NULL) {
// initialize semaphore
int nMaxOutbound = min((MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS), nMaxConnections);
semOutbound = new CSemaphore(nMaxOutbound);
}
if (pnodeLocalHost == NULL) {
CNetAddr local;
LookupHost("127.0.0.1", local, false);
pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService(local, 0), nLocalServices));
}
Discover(threadGroup);
#ifdef USE_TLS
if (!tlsmanager.prepareCredentials()) {
LogPrintf("TLS: ERROR: %s: %s: Credentials weren't generated. Node can't be started.\n", __FILE__, __func__);
return;
}
if (!tlsmanager.initialize()) {
LogPrintf("TLS: ERROR: %s: %s: TLS initialization failed. Node can't be started.\n", __FILE__, __func__);
return;
}
#else
return;
#endif
// Start threads
if (!GetBoolArg("-dnsseed", true))
LogPrintf("DNS seeding disabled\n");
else
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "dnsseed", &ThreadDNSAddressSeed));
// Send and receive from sockets, accept connections
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "net", &ThreadSocketHandler));
//Listen for I2P connections, or periodically check the i2p control port.
if (m_i2p_sam_session.get() != nullptr) {
if (GetBoolArg("-i2pacceptincoming", true) ) {
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "i2paccept", &ThreadI2PAcceptIncoming));
} else {
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "i2pcheck", &ThreadI2PCheck));
}
}
// Initiate outbound connections from -addnode
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "addcon", &ThreadOpenAddedConnections));
// Initiate outbound connections
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "opencon", &ThreadOpenConnections));
// Process messages
threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "msghand", &ThreadMessageHandler));
// Dump network addresses
scheduler.scheduleEvery(&DumpAddresses, DUMP_ADDRESSES_INTERVAL);
// Dump zindex stats if -zindex is enabled
if (fZindex) {
scheduler.scheduleEvery(&DumpZindexStats, DUMP_ZINDEX_INTERVAL);
}
// Dump network addresses
scheduler.scheduleEvery(&DumpAddresses, DUMP_ADDRESSES_INTERVAL);
scheduler.scheduleEvery(&CheckIfWeShouldStop, CHECK_PLZ_STOP_INTERVAL);
}
bool StopNode()
{
LogPrintf("StopNode()\n");
if (semOutbound)
for (int i=0; i<(MAX_OUTBOUND_CONNECTIONS + MAX_FEELER_CONNECTIONS); i++)
semOutbound->post();
// persist current zindex stats to disk before we exit
DumpZindexStats();
if (HUSH_NSPV_FULLNODE && fAddressesInitialized)
{
DumpAddresses();
fAddressesInitialized = false;
}
return true;
}
static class CNetCleanup
{
public:
CNetCleanup() {}
~CNetCleanup()
{
// Close sockets
BOOST_FOREACH(CNode* pnode, vNodes)
if (pnode->hSocket != INVALID_SOCKET)
CloseSocket(pnode->hSocket);
BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket)
if (hListenSocket.socket != INVALID_SOCKET)
if (!CloseSocket(hListenSocket.socket))
LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
// clean up some globals (to help leak detection)
BOOST_FOREACH(CNode *pnode, vNodes)
delete pnode;
BOOST_FOREACH(CNode *pnode, vNodesDisconnected)
delete pnode;
vNodes.clear();
vNodesDisconnected.clear();
vhListenSocket.clear();
delete semOutbound;
semOutbound = NULL;
delete pnodeLocalHost;
pnodeLocalHost = NULL;
#ifdef _WIN32
// Shutdown Windows Sockets
WSACleanup();
#endif
}
}
instance_of_cnetcleanup;
void RelayTransaction(const CTransaction& tx)
{
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(10000);
ss << tx;
RelayTransaction(tx, ss);
}
void RelayTransaction(const CTransaction& tx, const CDataStream& ss)
{
CInv inv(MSG_TX, tx.GetHash());
{
LOCK(cs_mapRelay);
// Expire old relay messages
while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime())
{
mapRelay.erase(vRelayExpiration.front().second);
vRelayExpiration.pop_front();
}
// Save original serialized message so newer versions are preserved
mapRelay.insert(std::make_pair(inv, ss));
vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv));
}
LOCK(cs_vNodes);
auto vRelayNodes = vNodes;
// If we have no nodes to relay to, there is nothing to do
if(vNodes.size() == 0) {
fprintf(stderr, "%s: No nodes to relay to!\n", __func__ );
return;
}
// We always round down, except when we have only 1 connection
auto newSize = (vNodes.size() / 2) == 0 ? 1 : (vNodes.size() / 2);
random_shuffle( vRelayNodes.begin(), vRelayNodes.end(), GetRandInt );
vRelayNodes.resize(newSize);
if (HUSH_TESTNODE==1 && vNodes.size() == 0) {
fprintf(stderr, "%s: -testnode=1, no peers, not relaying\n", __func__ );
return;
} else {
fprintf(stderr, "%s: Relaying %s to %lu of %lu peers\n", __func__, tx.GetHash().GetHex().c_str(), newSize, vNodes.size() );
}
// Only relay to randomly chosen 50% of peers
BOOST_FOREACH(CNode* pnode, vRelayNodes)
{
//TODO: correct fix is to correctly LOCK vRelayNodes
if(!pnode)
continue;
if(!pnode->fRelayTxes)
continue;
LOCK(pnode->cs_filter);
if (pnode->pfilter) {
if (pnode->pfilter->IsRelevantAndUpdate(tx)) {
pnode->PushInventory(inv);
}
} else {
pnode->PushInventory(inv);
}
}
}
void CNode::RecordBytesRecv(uint64_t bytes)
{
LOCK(cs_totalBytesRecv);
nTotalBytesRecv += bytes;
}
void CNode::RecordBytesSent(uint64_t bytes)
{
LOCK(cs_totalBytesSent);
nTotalBytesSent += bytes;
}
uint64_t CNode::GetTotalBytesRecv()
{
LOCK(cs_totalBytesRecv);
return nTotalBytesRecv;
}
uint64_t CNode::GetTotalBytesSent()
{
LOCK(cs_totalBytesSent);
return nTotalBytesSent;
}
void CNode::Fuzz(int nChance)
{
if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake
if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages
switch (GetRand(3))
{
case 0:
// xor a random byte with a random value:
if (!ssSend.empty()) {
CDataStream::size_type pos = GetRand(ssSend.size());
ssSend[pos] ^= (unsigned char)(GetRand(256));
}
break;
case 1:
// delete a random byte:
if (!ssSend.empty()) {
CDataStream::size_type pos = GetRand(ssSend.size());
ssSend.erase(ssSend.begin()+pos);
}
break;
case 2:
// insert a random byte at a random position
{
CDataStream::size_type pos = GetRand(ssSend.size());
char ch = (char)GetRand(256);
ssSend.insert(ssSend.begin()+pos, ch);
}
break;
}
// Chance of more than one change half the time:
// (more changes exponentially less likely):
Fuzz(2);
}
// CAddrDB
CAddrDB::CAddrDB()
{
pathAddr = GetDataDir() / "peers.dat";
}
bool CAddrDB::Write(const CAddrMan& addr)
{
// Generate random temporary filename
unsigned short randv = 0;
GetRandBytes((unsigned char*)&randv, sizeof(randv));
std::string tmpfn = strprintf("peers.dat.%04x", randv);
// serialize addresses, checksum data up to that point, then append csum
CDataStream ssPeers(SER_DISK, CLIENT_VERSION);
ssPeers << FLATDATA(Params().MessageStart());
ssPeers << addr;
uint256 hash = Hash(ssPeers.begin(), ssPeers.end());
ssPeers << hash;
// open temp output file, and associate with CAutoFile
boost::filesystem::path pathTmp = GetDataDir() / tmpfn;
FILE *file = fopen(pathTmp.string().c_str(), "wb");
CAutoFile fileout(file, SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("%s: Failed to open file %s", __func__, pathTmp.string());
// Write and commit header, data
try {
fileout << ssPeers;
}
catch (const std::exception& e) {
return error("%s: Serialize or I/O error - %s", __func__, e.what());
}
FileCommit(fileout.Get());
fileout.fclose();
// replace existing peers.dat, if any, with new peers.dat.XXXX
if (!RenameOver(pathTmp, pathAddr))
return error("%s: Rename-into-place failed", __func__);
return true;
}
bool CAddrDB::Read(CAddrMan& addr)
{
// open input file, and associate with CAutoFile
FILE *file = fopen(pathAddr.string().c_str(), "rb");
CAutoFile filein(file, SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("%s: Failed to open file %s", __func__, pathAddr.string());
// use file size to size memory buffer
int fileSize = boost::filesystem::file_size(pathAddr);
int dataSize = fileSize - sizeof(uint256);
// Don't try to resize to a negative number if file is small
if (dataSize < 0)
dataSize = 0;
vector<unsigned char> vchData;
vchData.resize(dataSize);
uint256 hashIn;
// read data and checksum from file
try {
filein.read((char *)&vchData[0], dataSize);
filein >> hashIn;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
filein.fclose();
CDataStream ssPeers(vchData, SER_DISK, CLIENT_VERSION);
// verify stored checksum matches input data
uint256 hashTmp = Hash(ssPeers.begin(), ssPeers.end());
if (hashIn != hashTmp)
return error("%s: Checksum mismatch, data corrupted", __func__);
unsigned char pchMsgTmp[4];
try {
// de-serialize file header (network specific magic number) and ..
ssPeers >> FLATDATA(pchMsgTmp);
// ... verify the network matches ours
if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp)))
return error("%s: Invalid network magic number in %s", __func__, pathAddr.string());
// de-serialize address data into one CAddrMan object
ssPeers >> addr;
}
catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
return true;
}
unsigned int ReceiveFloodSize() { return 1000*GetArg("-maxreceivebuffer", 5*1000); }
unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", 1*1000); }
CNode::CNode(SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn, WOLFSSL *sslIn) :
ssSend(SER_NETWORK, INIT_PROTO_VERSION),
addrKnown(5000, 0.001),
setInventoryKnown(SendBufferSize() / 1000)
{
ssl = sslIn;
nServices = 0;
hSocket = hSocketIn;
nRecvVersion = INIT_PROTO_VERSION;
nLastSend = 0;
nLastRecv = 0;
nSendBytes = 0;
nRecvBytes = 0;
nTimeConnected = GetTime();
nTimeOffset = 0;
addr = addrIn;
addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
nVersion = 0;
strSubVer = "";
fAllowlisted = false;
fOneShot = false;
fClient = false; // set by version message
fFeeler = false;
fInbound = fInboundIn;
fNetworkNode = false;
fSuccessfullyConnected = false;
fDisconnect = false;
nRefCount = 0;
nSendSize = 0;
nSendOffset = 0;
hashContinue = uint256();
nStartingHeight = -1;
fGetAddr = false;
fRelayTxes = false;
fSentAddr = false;
pfilter = new CBloomFilter();
nPingNonceSent = 0;
nPingUsecStart = 0;
nPingUsecTime = 0;
fPingQueued = false;
nPingRetry = 0;
nMinPingUsecTime = std::numeric_limits<int64_t>::max();
{
LOCK(cs_nLastNodeId);
id = nLastNodeId++;
}
if (fLogIPs)
LogPrint("net", "Added connection to %s peer=%d\n", addrName, id);
else
LogPrint("net", "Added connection peer=%d\n", id);
// Be shy and don't send version until we hear
if (hSocket != INVALID_SOCKET && !fInbound)
PushVersion();
GetNodeSignals().InitializeNode(GetId(), this);
m_serializer = std::unique_ptr<V1TransportSerializer>(new V1TransportSerializer());
}
bool CNode::GetTlsValidate()
{
if (tlsValidate == eTlsOption::FALLBACK_UNSET)
{
// This is useful for private Hush Smart Chains, that want to exist
// on a closed VPN with an internal CA or trusted cert system, or
// various other use cases
if ( GetBoolArg("-tlsvalidate", false)) {
LogPrint("tls", "%s():%d - TLS certificates will be validated\n", __func__, __LINE__);
tlsValidate = eTlsOption::FALLBACK_TRUE;
} else {
LogPrint("tls", "%s():%d - TLS certificates will NOT be validated\n", __func__, __LINE__);
tlsValidate = eTlsOption::FALLBACK_FALSE;
}
}
return (tlsValidate == eTlsOption::FALLBACK_TRUE);
}
CNode::~CNode()
{
// No need to make a lock on cs_hSocket, because before deletion CNode object is removed from the vNodes vector, so any other thread hasn't access to it.
// Removal is synchronized with read and write routines, so all of them will be completed to this moment.
if (hSocket != INVALID_SOCKET)
{
if (ssl)
{
unsigned long err_code = 0;
tlsmanager.waitFor(SSL_SHUTDOWN, hSocket, ssl, (DEFAULT_CONNECT_TIMEOUT / 1000), err_code);
wolfSSL_free(ssl);
ssl = NULL;
}
CloseSocket(hSocket);
}
if (pfilter)
delete pfilter;
GetNodeSignals().FinalizeNode(GetId());
}
void CNode::AskFor(const CInv& inv)
{
if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ)
return;
// a peer may not have multiple non-responded queue positions for a single inv item
if (!setAskFor.insert(inv.hash).second)
return;
// We're using mapAskFor as a priority queue,
// the key is the earliest time the request can be sent
int64_t nRequestTime;
limitedmap<CInv, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv);
if (it != mapAlreadyAskedFor.end())
nRequestTime = it->second;
else
nRequestTime = 0;
LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id);
// Make sure not to reuse time indexes to keep things in the same order
int64_t nNow = GetTimeMicros() - 1000000;
static int64_t nLastTime;
++nLastTime;
nNow = std::max(nNow, nLastTime);
nLastTime = nNow;
// Each retry is 2 minutes after the last
nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
if (it != mapAlreadyAskedFor.end())
mapAlreadyAskedFor.update(it, nRequestTime);
else
mapAlreadyAskedFor.insert(std::make_pair(inv, nRequestTime));
mapAskFor.insert(std::make_pair(nRequestTime, inv));
}
void CNode::BeginMessage(const char* pszCommand) EXCLUSIVE_LOCK_FUNCTION(cs_vSend)
{
ENTER_CRITICAL_SECTION(cs_vSend);
assert(ssSend.size() == 0);
ssSend << CMessageHeader(Params().MessageStart(), pszCommand, 0);
LogPrint("net", "sending: %s ", SanitizeString(pszCommand));
}
void CNode::AbortMessage() UNLOCK_FUNCTION(cs_vSend)
{
ssSend.clear();
LEAVE_CRITICAL_SECTION(cs_vSend);
LogPrint("net", "(aborted)\n");
}
void CNode::EndMessage() UNLOCK_FUNCTION(cs_vSend)
{
// The -*messagestest options are intentionally not documented in the help message,
// since they are only used during development to debug the networking code and are
// not intended for end-users.
if (mapArgs.count("-dropmessagestest") && GetRand(GetArg("-dropmessagestest", 2)) == 0)
{
LogPrint("net", "dropmessages DROPPING SEND MESSAGE\n");
AbortMessage();
return;
}
if (mapArgs.count("-fuzzmessagestest"))
Fuzz(GetArg("-fuzzmessagestest", 10));
if (ssSend.size() == 0)
{
LEAVE_CRITICAL_SECTION(cs_vSend);
return;
}
// Set the size
unsigned int nSize = ssSend.size() - CMessageHeader::HEADER_SIZE;
WriteLE32((uint8_t*)&ssSend[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize);
// Set the checksum
uint256 hash = Hash(ssSend.begin() + CMessageHeader::HEADER_SIZE, ssSend.end());
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
assert(ssSend.size () >= CMessageHeader::CHECKSUM_OFFSET + sizeof(nChecksum));
memcpy((char*)&ssSend[CMessageHeader::CHECKSUM_OFFSET], &nChecksum, sizeof(nChecksum));
LogPrint("net", "(%d bytes) peer=%d\n", nSize, id);
std::deque<CSerializeData>::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData());
ssSend.GetAndClear(*it);
nSendSize += (*it).size();
// If write queue empty, attempt "optimistic write"
if (it == vSendMsg.begin())
SocketSendData(this);
LEAVE_CRITICAL_SECTION(cs_vSend);
}
void CNode::PushAddrMessage(CSerializedNetMsg&& msg)
{
size_t nMessageSize = msg.data.size();
LogPrint("net", "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.m_type), nMessageSize, GetId());
// make sure we use the appropriate network transport format
std::vector<unsigned char> serializedHeader;
m_serializer->prepareForTransport(msg, serializedHeader);
size_t nTotalSize = nMessageSize + serializedHeader.size();
{
LOCK(cs_vSend);
//log total amount of bytes per message type
mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize;
nSendSize += nTotalSize;
// if (nSendSize > nSendBufferMaxSize) fPauseSend = true;
//Add Header
std::deque<CSerializeData>::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData());
CSerializeData &d = *it;
d.insert(d.end(), serializedHeader.begin(), serializedHeader.end());
//Add Message
if (nMessageSize) {
d.insert(d.end(), msg.data.begin(), msg.data.end());
}
if (it == vSendMsg.begin())
SocketSendData(this);
}
}
size_t GetNodeCount(NumConnections flags)
{
LOCK(cs_vNodes);
if (flags == CONNECTIONS_ALL) // Shortcut if we want total
return vNodes.size();
int nNum = 0;
for (const auto& pnode : vNodes) {
if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
nNum++;
}
}
return nNum;
}
void SetNetworkActive(bool active)
{
LogPrint("net", "SetNetworkActive: %s\n", active);
if (fNetworkActive == active) {
return;
}
fNetworkActive = active;
if (!fNetworkActive) {
LOCK(cs_vNodes);
// Close sockets to all nodes
for (CNode* pnode : vNodes) {
pnode->CloseSocketDisconnect();
}
}
// uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
}
void CopyNodeStats(std::vector<CNodeStats>& vstats)
{
vstats.clear();
LOCK(cs_vNodes);
vstats.reserve(vNodes.size());
BOOST_FOREACH(CNode* pnode, vNodes) {
CNodeStats stats;
pnode->copyStats(stats, addrman.m_asmap);
vstats.push_back(stats);
}
}